你还在为大模型的管理、评测、日志追踪、A/B测试、数据集构建焦头烂额?
你还在 Excel、Postman、Jupyter Notebook 之间来回横跳?
是时候让 MME(Model Management & Evaluation)来拯救你的 AI 工程生活了!
一、前言:大模型时代,谁来“管住”这些AI巨兽?
自从 ChatGPT、文心一言、通义千问等大模型横空出世,AI开发者的日常就变成了“模型多如牛毛,接口五花八门,日志满天飞,评测全靠猜”。
企业级AI应用开发,最怕的不是没模型,而是模型太多、管理太乱、效果难评、成本难控。
你是不是也遇到过这些“灵魂拷问”:
-
模型接入太多,接口各异,怎么统一管理?
-
模型效果更新了,怎么科学对比新老模型?
-
生产环境的真实请求,怎么转化为高质量测试集?
-
Token用量、API成本、性能瓶颈,怎么一目了然?
-
日志追踪、回放、A/B测试,怎么一站式搞定?
如果你有以上困扰,恭喜你,MME就是为你量身定制的“AI模型管理神器”!
二、MME到底是什么?一句话总结
MME(Model Management & Evaluation)= LLM模型的“管家+裁判+数据分析师+安全卫士”
它是一个基于 Blazor Server Side 的现代化平台,专为企业级AI应用场景打造,集模型管理、日志追踪、回放、A/B评测于一体,让你的大模型团队“卷”出新高度!
三、核心功能大揭秘:MME凭什么这么强?
1. 智能代理切换:多模型接入,像切西瓜一样丝滑
-
多配置管理:OpenAI、Azure、Bedrock、私有模型……想接谁就接谁,配置一键切换。
-
智能路由:自动把请求转发到目标API,接口统一,开发体验拉满。
-
Bearer Token管理:每个模型配置独立令牌,权限清晰,安全无忧。
-
流式支持:SSE流式响应全程支持,实时记录、实时转发,不卡壳。
-
接口全覆盖:/v1/chat/completions、/v1/embeddings、/v1/rerank、/v1/models……你想要的接口都能代理。
-
高可用性:请求重试、超时配置、自动故障转移,模型服务稳如老狗。
一句话总结:MME让你在多模型之间“左拥右抱”,再也不用担心接口兼容和切换的烦恼。
2. A/B测试评测:模型效果,科学对比不靠玄学
-
对比测试:同一批请求,多个模型一起上,效果一目了然。
-
回归测试:模型升级后,效果提升还是退步?一测便知。
-
量化分析:支持多维度科学评估,数据驱动模型选择。
-
真实数据驱动:基于生产环境真实请求,评测结果更靠谱。
一句话总结:MME让模型评测不再靠“拍脑袋”,而是靠数据说话。
3. 智能数据集管理:数据集构建、版本、质量全搞定
-
多类型支持:QA、Chat、Completion……各种数据集类型全覆盖。
-
多来源创建:日志导入、手动添加、批量导入,数据集构建so easy。
-
批量操作:Excel、CSV、JSON格式随意导入导出,和数据科学家友好无比。
-
智能标签&评分:难度分级、质量打星,数据集管理精细到牙缝。
-
统计分析&版本管理:数据分布、状态、归档、删除,数据生命周期全掌控。
一句话总结:MME让你的数据集“有谱有谱再有谱”,再也不怕数据混乱。
4. 全链路日志追踪:API调用全透明,性能成本一手掌握
-
实时记录:所有API请求和响应,自动全量记录。
-
流式处理优化:流式响应合并,日志分析不再碎片化。
-
详细分析:请求体、响应体、耗时、状态码、Token用量……细节拉满。
-
多维筛选:按时间、状态码、代理配置、模型名称等多维度筛选。
-
数据导出:Excel、Log格式随意导出,方便离线分析。
-
性能监控:API调用性能、Token成本一目了然,老板再也不担心你乱花钱。
一句话总结:MME让你对每一次API调用都了如指掌,性能、成本、问题全都逃不掉。
5. 日志回放功能:历史请求秒变测试集,数据复用效率爆表
-
一键回放:历史请求日志一键转为测试数据集,复用率100%。
-
智能去重:自动检测重复数据,数据集干净整洁。
-
批量添加:日志条目批量转数据集,效率飞起。
-
元数据保留:模型名、代理信息等元数据全保留,溯源无忧。
-
质量标注:回放数据支持难度、质量评分,数据集更有价值。
一句话总结:MME让你的生产数据“物尽其用”,测试集构建快人一步。
6. 企业级认证与安全:数据安全,稳如泰山
-
Cookie认证:安全Cookie机制,防止未授权访问。
-
会话管理:7天免登录+滑动过期,安全与体验兼得。
-
权限控制:页面级访问控制,敏感数据不外泄。
-
会话保护:防止会话劫持,数据泄露说拜拜。
一句话总结:MME让你的AI平台安全无死角,合规放心用。
四、技术架构:现代化.NET生态,性能与体验双保险
前端:Blazor Server Side + Ant Design Blazor
-
.NET 8.0原生Web框架,性能强悍
-
企业级UI组件,颜值与交互并存
-
响应式设计,PC、平板、手机全适配
后端:ASP.NET Core 8.0 + Yarp反向代理
-
高性能Web API,扩展性强
-
微软官方反向代理,稳定可靠
-
自定义中间件,日志追踪无缝集成
数据存储:PostgreSQL/SQLite双模式
-
生产用PostgreSQL,开发用SQLite,灵活切换
-
ORM框架SqlSugar,Code First开发效率高
-
预留向量数据库接口,未来可扩展
第三方集成
-
Microsoft.SemanticKernel.Core:AI应用开发利器
-
AutoMapper:对象映射,开发效率提升
-
NPOI:Excel文件处理,批量数据无压力
-
Polly:重试与熔断,服务高可用
五、部署体验:本地开发、Docker一键、环境变量全支持
本地开发部署
-
克隆项目,配置数据库(PostgreSQL/SQLite任选)
-
配置管理员账户、OpenAI等API密钥
-
dotnet restore && dotnet run
,浏览器访问http://localhost:5000
-
用管理员账户登录,开始你的AI模型管理之旅
Docker容器部署
-
Docker Compose一键部署:支持PostgreSQL/SQLite,生产/开发环境随心选
-
配置文件/环境变量双模式:灵活适配企业IT规范
-
镜像拉取即用:官方镜像,安全可靠
-
自定义构建:源码级定制,满足个性化需求
一句话总结:MME部署体验“丝滑”,开发、测试、生产环境全覆盖。
六、使用指南:从入门到精通,人人都能玩转MME
1. 系统登录
-
管理员账户登录,首次请务必修改默认密码!
2. 配置API代理
-
进入“代理配置管理”,添加OpenAI、Azure等API配置
-
系统自动生成Bearer Token,安全调用代理接口
3. 使用代理API
-
用Bearer Token调用统一代理接口,支持流式/非流式
-
Chat Completions、Embeddings等接口一网打尽
4. 数据集管理
-
创建数据集,支持手动、批量、日志回放多种方式
-
数据集导出Excel/Log,方便离线分析和训练
5. 请求日志分析
-
全链路日志可视化,支持多维筛选、详细溯源
-
Token用量、成本分析,老板看了都说好
6. A/B测试与效果评估
-
多模型对比测试,科学决策模型升级与切换
-
回归测试,确保模型升级不“翻车”
七、应用场景:企业AI团队的“生产力倍增器”
-
企业AI应用开发:多团队、多项目模型统一管理,资源共享,链路追踪
-
模型效果评估:A/B测试、回归测试,基于真实业务数据科学评测
-
成本优化分析:实时监控Token用量和API成本,优化模型选择
-
数据集构建与管理:生产环境数据高效转化为测试集,支持版本和质量管理
八、未来规划:MME的野心不止于此
-
AI模型效果自动评测平台
-
智能化模型推荐与切换
-
与MLOps平台深度集成
-
支持自定义模型接入与管理
一句话总结:MME不仅是现在的“模型管家”,更是未来AI团队的“智能大脑”!
九、开源贡献与技术支持
-
MIT协议,放心用、随便改、尽情玩
-
欢迎Issue、PR,社区共建更强大
-
内置详细使用手册,遇到问题先查文档
-
技术支持:Issue、邮件、社区,开发团队在线答疑
十、结语:MME,让AI模型管理和评测“优雅到极致”
在AI大模型“百花齐放”的今天,谁能把模型管理、评测、数据集、日志、成本、安全一站式搞定,谁就能在AI落地的赛道上“快人一步”。
MME不是万能的,但没有MME,AI团队的痛点就真的无解。
如果你是AI开发者、架构师、数据科学家、企业IT负责人,
如果你想让你的AI团队“卷”出新高度,
如果你想让模型管理和评测“优雅到极致”——
赶紧试试MME吧!
https://github.com/xuzeyu91/MME
Star、Fork、Share,支持一下国产AI基础设施的进步!
让我们一起把AI模型管理玩出花来!