1机器学习
定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。
这也是机器学习目前的困境所在,只能针对单方面的事物进行学习,还不会变通。
1.1机器学习与人工智能关系
其关系可参考阅读链接:
人工智能、机器学习、深度学习、神经网络概念说明
用一张图可表示如下:
1.2机器学习分类
机器学习分类参考
机器学习通常分为四类,每类又细分如下
-
A监督学习
监督学习经典分两类:- 1.Regression回归问题(从连续的数据,进行预测)
如线性回归 - 2.Classification分类问题(离散的数据)
如逻辑回归
监督学习常用算法:
- Linear Regression(线性回归)
- Logistic Regression(逻辑回归)
- Neural networks(神经网络)
- Support Vector Machines (SVMs)(支持向量机)
- Back Propagation(BP算法)
- Regularization(正则化)
- Decision Trees and Random Forests(决策树 和 随机深林)
- K-Nearest Neighbors(KNN近邻算法)
- 1.Regression回归问题(从连续的数据,进行预测)
-
B无监督学习
常见的无监督学习算法:- Clustering(聚类算法)
K-Means
Hierarchical Cluster Analysis (HCA)
Expectation Maximization - Visualization and dimensionality reduction
Principal Component Analysis (PCA)
Kernel PCA
Locally-Linear Embedding (LLE)
t-distributed Stochastic Neighbor Embedding (t-SNE) - Association rule learning
Apriori
Eclat
- Clustering(聚类算法)
-
C半监督学习
-
D强化学习
2.线性回归与逻辑回归
2.1一元线性回归
线性回归内容参考如下文章:
算法笔记- 线性回归(Linear Regression)
1.一元线性回归假设函数:
2.未知变量:
w w w、 b b b
3.损失函数(即目标函数):
要使损失函数 L ( w , b ) L(w,b) L(w,b)最小化
4.求解的两种方法
- A.最小二乘法:
求解 w w w和 b b b是使损失函数最小化的过程,在统计中称为线性回归模型的最小二乘“参数估计”(parameter estimation)。我们可以将 L ( w , b ) L(w,b) L(w,b)分别对 w w w 和 b b b求导,省略了前面系数 1 / n 1/n 1/n得:
令上述两式为0,可得到 w w w和 b b b最优解的闭式(closed-form)解:
以上公式具体推到过程参考:最小二乘法求回归直线方程的推导
-B.梯度下降法(gradient descent)
梯度下降核心内容是对自变量进行不断的更新(针对 w w w和 b b b求偏导),使得目标函数不断逼近最小值的过程:
此处的 w w w和 b b b的梯度求法和最小二乘法一样:
梯度的理解可参考如下文章:
一元函数的梯度就是一元函数的倒数
1.梯度
2.梯度理解
2.2多元线性回归
如下内容参考文章:
1.简单多元线性回归(梯度下降算法与矩阵法)
2.多元线性回归算法学习笔记
3.线性模型
1.假设函数
h ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n = θ T x h(x)=\theta_0+\theta_1x_1+\theta_2x_2+\dots+\theta_nx_n=\theta^Tx h(x)=θ0+θ1x1+θ2x2+