CV学习第三课——机器学习之线性回归与逻辑回归

本文介绍了机器学习的基本概念,探讨了机器学习与人工智能的关系,并详细讲解了一元和多元线性回归以及二分类和多分类逻辑回归。内容包括线性回归的最小二乘法和梯度下降法求解,以及逻辑回归的目标函数和梯度下降优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1机器学习

定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。
这也是机器学习目前的困境所在,只能针对单方面的事物进行学习,还不会变通。

1.1机器学习与人工智能关系

其关系可参考阅读链接:
人工智能、机器学习、深度学习、神经网络概念说明
用一张图可表示如下:在这里插入图片描述

1.2机器学习分类

机器学习分类参考
机器学习通常分为四类,每类又细分如下

  • A监督学习
    监督学习经典分两类:

    • 1.Regression回归问题(从连续的数据,进行预测)
      如线性回归
    • 2.Classification分类问题(离散的数据)
      如逻辑回归

    监督学习常用算法:

    • Linear Regression(线性回归)
    • Logistic Regression(逻辑回归)
    • Neural networks(神经网络)
    • Support Vector Machines (SVMs)(支持向量机)
    • Back Propagation(BP算法)
    • Regularization(正则化)
    • Decision Trees and Random Forests(决策树 和 随机深林)
    • K-Nearest Neighbors(KNN近邻算法)
  • B无监督学习
    常见的无监督学习算法:

    • Clustering(聚类算法)
      K-Means
      Hierarchical Cluster Analysis (HCA)
      Expectation Maximization
    • Visualization and dimensionality reduction
      Principal Component Analysis (PCA)
      Kernel PCA
      Locally-Linear Embedding (LLE)
      t-distributed Stochastic Neighbor Embedding (t-SNE)
    • Association rule learning
      Apriori
      Eclat
  • C半监督学习

  • D强化学习

2.线性回归与逻辑回归

2.1一元线性回归

线性回归内容参考如下文章:
算法笔记- 线性回归(Linear Regression)
1.一元线性回归假设函数:

2.未知变量:
w w w b b b
3.损失函数(即目标函数):
在这里插入图片描述
在这里插入图片描述
要使损失函数 L ( w , b ) L(w,b) L(w,b)最小化
4.求解的两种方法

  • A.最小二乘法:
    求解 w w w b b b是使损失函数最小化的过程,在统计中称为线性回归模型的最小二乘“参数估计”(parameter estimation)。我们可以将 L ( w , b ) L(w,b) L(w,b)分别对 w w w b b b求导,省略了前面系数 1 / n 1/n 1/n得:
    在这里插入图片描述
    令上述两式为0,可得到 w w w b b b最优解的闭式(closed-form)解:
    在这里插入图片描述
    以上公式具体推到过程参考:最小二乘法求回归直线方程的推导
    -B.梯度下降法(gradient descent)
    梯度下降核心内容是对自变量进行不断的更新(针对 w w w b b b求偏导),使得目标函数不断逼近最小值的过程:
    在这里插入图片描述
    此处的 w w w b b b的梯度求法和最小二乘法一样:
    在这里插入图片描述
    梯度的理解可参考如下文章:
    一元函数的梯度就是一元函数的倒数
    1.梯度
    2.梯度理解

2.2多元线性回归

如下内容参考文章:
1.简单多元线性回归(梯度下降算法与矩阵法)
2.多元线性回归算法学习笔记
3.线性模型

1.假设函数
h ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n = θ T x h(x)=\theta_0+\theta_1x_1+\theta_2x_2+\dots+\theta_nx_n=\theta^Tx h(x)=θ0+θ1x1+θ2x2+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值