
物理信息神经网络研究(PINN)
文章平均质量分 90
PINN从入门到精通!本系列教程带你从零搭建波动方程等PDE求解器,全面掌握PyTorch/TF实战。深入PINN训练挑战、归一化、自适应权重、硬约束、RAR、傅里叶特征、域分解、cPINN/XPINN等高级技术。精读文献,解读代码,提升模型性能与鲁棒性,最终攻克复杂多尺度物理问题。
ZhuChunSHU
ZhuChunSHU。985院校硕士毕业,现担任算法研究员一职,热衷于深度学习算法研究与应用。曾获得阿里云天池比赛第三名,CCE比赛第五名,科大讯飞Q比赛第六名。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习模型在PDE求解中的实战:详细综述
传统数值方法,如有限差分法(FDM)、有限元法(FEM)和谱方法,虽然在低维问题中表现良好,但在高维情况下往往效率低下。深度学习模型通过强大的函数逼近能力,可以直接学习PDEs的解或解算子,绕过传统方法对网格的依赖。本文将深入探讨深度学习模型在PDEs求解中的实际应用,重点介绍物理信息神经网络(PINNs)、深度BSDE方法和傅里叶神经算子(FNO),并提供可运行的代码示例。以下是三种关键方法及其在PDEs求解中的应用。以下是深度学习方法在具体PDEs求解中的实际案例,展示其在不同领域的应用。原创 2025-05-24 18:10:51 · 321 阅读 · 0 评论 -
科学计算中的深度学习模型精解(2)(RNN,LSTM,Transformer,KAN)
深度学习模型在科学计算中正变得越来越重要,能够处理复杂的时间序列、物理模拟和生物数据等问题。本文将深入探讨四种关键模型:RNN、LSTM、Transformer 和 KAN,介绍它们的理论基础、架构设计、在科学计算中的应用,以及可直接运行的代码示例。我们还将讨论如何使用高级可视化技术来展示模型结果,帮助读者更好地理解和应用这些模型。循环神经网络(Recurrent Neural Network,RNN)是一种专门设计用于处理序列数据的神经网络。原创 2025-05-24 17:50:05 · 474 阅读 · 0 评论 -
科学计算中的深度学习模型精解:CNN、U-Net 和 Diffusion Models
深度学习模型在科学计算中提供了强大的工具,能够处理高维数据和复杂问题。CNN 通过卷积操作提取空间特征,U-Net 通过其独特的编码器-解码器结构实现精确分割,Diffusion Models 则通过噪声添加和去噪过程生成高质量数据。这些模型在解决 PDEs、图像处理和数据生成等任务中表现出色。原创 2025-05-24 16:59:11 · 365 阅读 · 0 评论 -
神经算子项目实战:数据分析、可视化与实现全过程
的求解任务为背景,通过 DeepONet 模型从输入函数 u0(x)u_0(x)u0(x) 映射到解函数 u(x,t)u(x,t)u(x,t),并实现完整的训练、分析与可视化流程。:优先报告 MSE、MAE 等全局指标,并与基线(如传统数值解)对比。:真实值 vs 预测值曲线直接体现拟合能力,特别是边界与振荡区。:测试未见分布下的输入,检验模型是否真正学习了“算子”的本质。我们使用傅里叶函数随机生成初始条件,并数值求解得到终态解。:抽取高误差样本做案例分析,发现模型“盲区”。原创 2025-05-24 16:33:03 · 290 阅读 · 0 评论 -
DeepONet深度解析:原理、架构与实现
本文将深入解析DeepONet(一种可学习算子网络)的基本原理、网络架构及其在科学计算中的实现,并介绍提升网络学习能力与增强泛化能力的常用技巧。文中以PyTorch为例,展示完整源码,助您快速上手并构建高性能DeepONet模型。原创 2025-05-24 15:51:33 · 291 阅读 · 0 评论 -
神经算子与FNO技术详解
对于输入函数 $v: \Omega \rightarrow \mathbb{R}^{d_v}$,FNO层的操作可以表示为:原创 2025-05-24 15:36:04 · 307 阅读 · 0 评论 -
PINN高阶技术综合应用:复杂问题求解与神经算子进阶
本文深入探讨物理信息神经网络(PINNs)在处理复杂工程问题中的高阶技术应用。重点关注高维偏微分方程、强非线性系统、奇异性问题的求解策略,反问题中的参数识别与系统辨识方法,以及基于问题特性的网络架构优化设计。此外,本文详细介绍了神经算子理论及其在学习解算子中的创新应用,为PINN技术的工程实践提供了系统性的高级解决方案。高阶PINN技术、反问题求解、网络架构优化、神经算子、复杂系统建模。原创 2025-05-24 15:29:19 · 467 阅读 · 0 评论 -
第5周 PINN高级技术 (II): 复杂问题求解策略
物理信息神经网络 (PINN) 已成为求解偏微分方程 (PDE) 和解决涉及物理约束的各类科学计算问题的强大工具。然而,在面对复杂问题,如具有多尺度特性、强非线性或需要高精度解的场景时,标准PINN的性能可能会受到限制。本文旨在深入探讨一系列高级PINN技术,旨在提升模型在复杂问题上的求解能力和鲁棒性。我们将重点介绍自适应采样、残差归一化、物理信息极限学习机 (PIELM) 等高级技巧,并详细讨论多尺度问题的求解策略,包括傅里叶特征映射、域分解方法。原创 2025-05-24 14:34:34 · 106 阅读 · 0 评论 -
第4周 PINN高级技术 (I): 提升模型性能与鲁棒性
特性软约束 (Soft Constraints)硬约束 (Hard Constraints)实现复杂度简单可能复杂,取决于问题条件满足度近似满足精确满足 (如果ansatz正确)损失函数包含PDE, IC, BC损失项主要为PDE损失项 (BC/IC项可能移除或权重很小)权重调整需要仔细调整 wPDE,wIC,wBC主要调整 wPDE (如果还有其他软约束数据项)通用性非常通用取决于构造 A(x,t),B(x,t) 的难易程度潜在问题收敛慢,梯度病态,条件满足不精确。原创 2025-05-24 14:17:51 · 444 阅读 · 0 评论 -
第3周 PINN实战演练: 手把手搭建波动方程求解器
通过分析类似DeepXDE这样的开源项目,我们可以学习到许多实用的工程技巧和解决复杂问题的思路,这对于我们自己从零开始搭建或改进PINN模型非常有帮助。建议你亲自去GitHub上下载DeepXDE,运行它的示例,并尝试修改它们来解决你感兴趣的问题。除了我们之前手动实现的1D波动方程求解器,分析成熟的开源项目能帮助我们理解更复杂的PINN应用和实现技巧。我们可以选择一个比1D波动方程稍微复杂一些,但仍然易于理解的案例,例如。下面是一个使用PyTorch实现PINN求解1D波动方程的示例代码。原创 2025-05-24 14:00:14 · 237 阅读 · 0 评论 -
第2周 PINN核心技术揭秘: 如何用神经网络求解偏微分方程
偏微分方程是描述自然界和工程领域中各种物理现象(如热量传播、流体流动、波的振动、电磁场分布等)的基本数学语言。解析解通常只存在于一些简单情况。对于复杂的PDEs,我们依赖于数值方法来获得近似解。有限元法 (Finite Element Method, FEM)原理将求解域划分为许多小的、互不重叠的子区域(称为“单元”,如三角形、四边形)。在每个单元内,用一组简单的基函数(称为“形函数”或“插值函数”)的线性组合来逼近真实解。原创 2025-05-24 12:51:09 · 731 阅读 · 0 评论 -
第1周 神经网络基石: 从零构建你的第一个模型
机器学习是人工智能的一个分支,其核心思想是让计算机系统利用数据进行“学习”,从而在没有被显式编程的情况下完成特定任务。它通过算法分析大量数据,识别模式,并基于这些模式做出预测或决策。原创 2025-05-24 12:03:38 · 513 阅读 · 0 评论