bert:pre-training of deep bidirectional transformers for language understanding

BERT是预训练语言模型,通过双向Transformer解决单向性限制,使用Masked Language Model (MLM) 和 Next Sentence Prediction (NSP) 进行预训练。在fine-tuning阶段,模型适用于多种下游任务。BERT的基础版和大型版参数量不同,其输入处理包括token、segment和位置嵌入,预训练任务的设计是其创新之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值