biggan:large scale gan training for high fidelity natural image synthesis

本文深入探讨了DeepMind的BigGAN,这是一个强大的GAN模型,通过增大模型规模和批处理大小实现了高质量图像生成。BigGAN的核心包括:增大模型参数和批处理大小,对潜在输入进行分层处理,以及采用截断技巧和正交正则化来应对模式塌陷问题。研究还分析了GAN训练期间的不稳定性并提出改进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度解读DeepMind新作:史上最强GAN图像生成器—BigGAN - 知乎本期推荐的论文笔记来自 PaperWeekly 社区用户 @TwistedW。由 DeepMind 带来的 BigGAN 可谓是笔者见过最好的 GAN 模型了,这里的 Big 不单单是指模型参数和 Batch 的大,似乎还在暗示让人印象深刻,文章也确实做到…https://zhuanlan.zhihu.com/p/46581611这篇文章写的还是很容易理解的,相比较之前大规模的摆公式,biggan好理解多了,但是模型结构图都放到了附录中了,biggan的核心有三点,第一更大了,大bs和大参数,第二,来源于对模型的调整,比如latent的分层输入,贡献c,第三latent z的截断输入,为了应对这种截断输入,提出了正交正则化,最后基于训练不稳定提了一些改进的技巧。

1.introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值