轻量微调和推理stanford_alpca

本文介绍了如何在A10 GPU上轻量微调和推理Stanford Alpaca模型,该模型基于7B LLaMA模型在52K条指令数据上进行训练。内容包括下载模型、安装依赖、数据准备、模型微调及参数调整,以适应有限的GPU显存,以及推理阶段的说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当前的Alpaca模型是在Self-Instruct论文中使用的技术生成的52K条指令数据,从7B LLaMA模型微调而来,并进行了一些修改。

A10 gpu显存:22G,cu117,驱动470.103.01

absl-py                  1.4.0
accelerate               0.18.0
addict                   2.4.0
aenum                    3.1.12
aiofiles                 23.1.0
aiohttp                  3.8.4
aiosignal                1.3.1
albumentations           0.4.3
altair                   4.2.2
antlr4-python3-runtime   4.9.3
anyio                    3.6.2
appdirs                  1.4.4
asttokens                2.2.1
async-timeout            4.0.2
attrs                    22.2.0
backcall                 0.2.0
basicsr                  1.4.2
bcrypt                   4.0.1
beautifulsoup4           4.12.1
blendmodes     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值