神经网络常用的数据预处理方式

本文介绍了一种简单有效的神经网络数据预处理方法,包括中心化/零均值和归一化,通过调整数据分布,提升模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络常用的数据预处理方式

小白经过一段时间的学习,发现一种简单好用的数据预处理方式,推荐给大家。

中心化/零均值(zero-center)

#将每一个数据减去每一维数据的平均值
X -= np.mean(X,axis = 0)

归一化(Normalization)

#将每一个数据除以每一维数据的标准差
X /= np.std(X,axis = 0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值