
Caffe
文章平均质量分 53
不吹牛不睡觉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
caffe小显存问题
问题描述: 本人使用硬件1050 2G显卡,在运行faster-rcnn中的./tools/demo.py时,出现以下问题: Loaded network /mydata/rcnn/py-faster-rcnn/data/faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel F0318 09:18:46.357918 17490 sync原创 2017-03-18 09:39:41 · 3289 阅读 · 0 评论 -
faster rcnn 中如何使用 cudnn5.1
环境: ubuntu16.04.2 gtx1050 2g cuda8 cudnn5.1 问题描述: 使用faster rcnn中的caffe时,修改Makefile.config,无法编译通过 cudnn:=1,而blvc中的caffe是可以再cudnn:=1的情况下编译成功的。原因是随之caffe的更新,支持了cudnn5.1,而faster rcnn中的caffe一直没有更新 解原创 2017-03-18 15:46:52 · 1515 阅读 · 0 评论 -
使用caffe训练faster-rcnn时遇到的问题总结
经过今天一天的实验,充分了解了在深度学习领域,显存大的重要性。 不得不承认,有了N卡以后,效率提高了很多,当然这也得益于纠缠于cpu训练faster rcnn的日子.... (1)今天早上,主要解决了faster rcnn 下的caffe不能编译的问题。 问题产生的原因是faster rcnn下的caffe不支持cudnn5.1,当时就单纯的把Makefile.config下的 USE_CU原创 2017-03-18 16:41:40 · 11601 阅读 · 9 评论 -
Caffe-OpenCL在ubuntu16.04.2上的简要安装指南
本人迷信AMD战未来,于去年毕业后,购买AMD RX480,但是caffe下的GPU加速默认针对n卡,需要安装cuda。至此要么换卡,要么使用opencl版的caffe。想了想,也许rx480以后可以在深度学习领域战未来呢?于是乎,走上了安装opencl-caffe的不归路。 简要安装指南: 一、安装纯净ubuntu16.04.2系统 这是首先要做的事情,本人使用了win10+ubuntu1原创 2017-03-12 11:58:52 · 3475 阅读 · 0 评论 -
caffe配置cuda时出现的几个问题
本次实验环境为: ubuntu16.04.2 gtx1050 2G 之前一直使用cpu进行实验,因为要使用faster rcnn,此时再使用cpu进行实验时,虽然按照网络上各种修改后,可以使用cpu进行训练,但是我出现了无法保存模型文件的问题。深深的感觉到有一个正常的实验环境是多么重要。否则会把问题纠结于各种环境和修改无关紧要的问题(gpu-》cpu)上,无法继续实验。之前小一点的数原创 2017-03-18 09:59:26 · 1143 阅读 · 0 评论 -
libEGL.so.1 不是符号连接
环境: ubuntu16.04.2 nvidia 375.39 问题描述: 在编译caffe runtest时候,出现的问题 /sbin/ldconfig.real: /usr/lib/nvidia-375/libEGL.so.1 不是符号连接 /sbin/ldconfig.real: /usr/lib32/nvidia-375/libEGL.so.1 不是符号连接 原因: 系统找原创 2017-03-26 08:45:49 · 10394 阅读 · 0 评论 -
caffe runtest 3 failed
[ FAILED ] 3 tests, listed below: [ FAILED ] DetectNetTransformationLayerTest/1.TestHueRotation, where TypeParam = caffe::CPUDevice [ FAILED ] DetectNetTransformationLayerTest/1.TestAllAugment原创 2017-03-26 08:50:29 · 1325 阅读 · 0 评论