机器学习(常见面试之机器学习算法思想简单梳理)

本文主要梳理了机器学习面试中常见的算法思想,包括监督学习的分类和回归问题,如kNN、决策树、朴素贝叶斯、逻辑回归和支持向量机等。此外,还介绍了无监督学习的k-均值聚类和关联分析的Apriori算法。通过理解这些基础算法,可以帮助求职者更好地准备机器学习岗位的面试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  前言:
  找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑该岗位,毕竟在机器智能没有达到人类水平之前,机器学习可以作为一种重要的手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。

监督(supervised)

分类(classification)

1.knn(k Nearest Neighbors)算法:

  关键公式

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值