欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/150422211
免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。
SGLang,即 Structured Generation Language for LLMs,用于大语言模型的结构化生成语言,是 Stanford & Berkeley 团队推出的大模型推理引擎,优势是高吞吐 + 可编程。与 vLLM 相比,SGLang 在以下场景表现更优,即:
- 多轮对话吞吐提升最高 5 倍:SGLang 的核心创新 RadixAttention 用 Radix 树把 KV 缓存的前缀做全局复用,结合 LRU 策略,让同一对话历史的 KV 缓存不再反复生成,在 Llama-7B 多轮对话测试中,吞吐量比 vLLM 高出 5 倍。
- 复杂控制流原生支持:vLLM 的推理流程相对静态,复杂逻辑要靠 Prompt 模板;而 SGLang 提供嵌入式 Python DSL (Domain Structur