LLM - 使用 SGLang 部署 Qwen3-32B 与 Qwen2.5-VL-32B (1)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/150422211

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


SGLang,即 Structured Generation Language for LLMs,用于大语言模型的结构化生成语言,是 Stanford & Berkeley 团队推出的大模型推理引擎,优势是高吞吐 + 可编程。与 vLLM 相比,SGLang 在以下场景表现更优,即:

  1. 多轮对话吞吐提升最高 5 倍:SGLang 的核心创新 RadixAttention 用 Radix 树把 KV 缓存的前缀做全局复用,结合 LRU 策略,让同一对话历史的 KV 缓存不再反复生成,在 Llama-7B 多轮对话测试中,吞吐量比 vLLM 高出 5 倍。
  2. 复杂控制流原生支持:vLLM 的推理流程相对静态,复杂逻辑要靠 Prompt 模板;而 SGLang 提供嵌入式 Python DSL (Domain Structur
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值