1、支持向量机
支持向量机(Support Vector Machine)是一种二类分类模型,支持向量机的间隔最大化使它有别于感知机,同时支持向量机还包括核技巧,使得它解决非线性分类的问题。
这里的间隔分为硬间隔和软间隔。硬间隔是指间隔内没有误分类点,软间隔是允许间隔内有误分类点。
支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机、线性支持向量机及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。
2、模型
支持向量机是定义在特征空间上的间隔最大的线性分类器,所以,支持向量机的模型是一个具有“最大间隔”的划分超平面。
因此,支持向量机的划分超平面是 w T ∗ x + b = − 1 w^T*x+b=-1 wT∗x+b=−1到 w T ∗ x + b = 1 w^T*x+b=1 wT∗x+b=1的超平面,所以,预测样本点:
{ w T ∗ x + b ≤ − 1 , y i = − 1 w T ∗ x + b ≥ 1 , y i = 1 \begin{cases} w^T*x+b≤-1, & y_i=-1 \\ w^T*x+b≥1, & y_i=1 \end{cases} {
wT∗x+b≤−1,wT∗x+b≥1,yi=−1yi=1
3、策略
支持向量机的间隔: r = 2 ∣ ∣ w ∣ ∣ r = \frac{2}{||w||} r=∣∣w∣∣2
支持向量机在最大化间隔,那么也就是最小化: ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣,等价于最小化 ∣ ∣ w ∣ ∣ 2 2 \frac{||w||^2}{2} 2∣∣w∣∣2