numpy.linalg详解

简介

一个简单的小例子

a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([1, 2, 3])

# 求解线性最小二乘问题
x, residuals, rank, s = np.linalg.lstsq(a, b)

# 输出结果
print("最小二乘解:", x)
print("残差平方和:", residuals)
print("系数矩阵秩:", rank)
print("系数矩阵奇异值:", s)

运行结果

最小二乘解: [8.95659271e-17 5.00000000e-01]
残差平方和: [1.53568953e-35]
系数矩阵秩: 2
系数矩阵奇异值: [9.52551809 0.51430058]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值