时域卷积定理及频域卷积定理

本文详细解析了连续变量函数的卷积定理,通过傅里叶变换展示时域和频域卷积的关系,并介绍了离散变量序列的类似定理,包括证明过程。核心内容涉及连续函数的卷积公式F[g(t)∗h(t)]=G(ω)⋅H(ω)和离散序列的F[g*h]=G(ω)H(ω)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在这里插入图片描述

之前的文章介绍了卷积积分的计算,作为图神经网络的前置知识点,理解卷积定理有助于理解谱图卷积

卷积定理是傅立叶变换满足的一个重要性质。维基百科中卷积定理的定义如下:

卷积定理指出,两个函数(或信号)的卷积的傅里叶变换是它们傅里叶变换的逐点乘积。

更一般地说,一个域(例如,时域)中的卷积等于另一个域(例如,频域)中的逐点乘法。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。

连续变量的函数

卷积定理

设两个函数 g ( t ) g(t) g(t) h ( t ) h(t) h(t) 的傅里叶变换为 G G G H H H

G ( f ) ≜ F { g } ( f ) = ∫ − ∞ ∞ g ( t ) e − i 2 π f t   d t , f ∈ R H ( f ) ≜ F { h } ( f ) = ∫ − ∞ ∞ h ( t ) e − i 2 π f t   d t , f ∈ R \begin{aligned} G(f) &\triangleq \mathcal{F}\{g\}(f) = \int_{-\infty}^{\infty}g(t) e^{-i 2 \pi f t} \, dt, \quad f \in \mathbb{R}\\ H(f) &\triangleq \mathcal{F}\{h\}(f) = \int_{-\infty}^{\infty}h(t) e^{-i 2 \pi f t} \, dt, \quad f \in \mathbb{R} \end{aligned} G(f)H(f)F{g}(f)=g(t)ei2πftdt,fRF{h}(f)=h(t)ei2πftdt,fR其中, ≜ \triangleq 表示定义为, F \mathcal{F} F是傅里叶变换算子。通常, F { g } ( f ) \mathcal{F}\{g\}(f) F{g}(f) 也可以表示为 F { g ( t ) } \mathcal{F}\{g(t)\} F{g(t)} F [ g ( t ) ] \mathcal{F}[g(t)] F[g(t)] g g g h h h 的卷积定义为:
r ( t ) = { g ∗ h } ( t ) ≜ ∫ − ∞ ∞ g ( τ ) h ( t − τ )   d τ = ∫ − ∞ ∞ g ( t − τ ) h ( τ )   d τ . r(t) = \{g*h\}(t) \triangleq \int_{-\infty}^{\infty} g(\tau) h(t-\tau)\, d\tau = \int_{-\infty}^{\infty} g(t-\tau) h(\tau)\, d\tau. r(t)={gh}(t)g(τ)h(tτ)dτ=g(tτ)h(τ)dτ.这里, ∗ * 表示卷积。两个函数其他形式的卷积有 g ( t ) ∗ h ( t ) g(t)*h(t) g(t)h(t),博文卷积积分的计算有助于理解卷积。

卷积定理表述为:
R ( f ) ≜ F { r } ( f ) = G ( f ) H ( f ) . f ∈ R ( 1 ) R(f) \triangleq \mathcal{F}\{r\}(f) = G(f) H(f). \quad f \in \mathbb{R}\quad\quad(1) R(f)F{r}(f)=G(f)H(f).fR(1)其中 R ( f ) R(f) R(f)也可以写成如下形式: R ( f ) ≜ F [ r ( t ) ] ≜ F [ h ( t ) ∗ g ( t ) ] R(f)\triangleq \mathcal{F}[r(t)] \triangleq \mathcal{F}[h(t)*g(t)] R(f)F[r(t)]F[h(t)g(t)]

证明

根据傅里叶变换及卷积积分有:
F [ g ( t ) ∗ h ( t ) ] = ∫ − ∞ + ∞ g ( t ) ∗ h ( t ) e − i ω t d t = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( τ ) ∗ h ( t − τ ) d τ e − i ω t d t ( 卷积展开 ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ h ( t − τ ) e − i ω t d t   g ( τ ) d τ ( 1 ) \begin{aligned} \mathcal{F}[g(t)*h(t)]&=\int_{-\infin}^{+\infin} g(t)*h(t) e^{-i\omega t}dt \\ &=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin} g(\tau)*h(t-\tau) d\tau e^{-i\omega t}dt \qquad (卷积展开)\\ &=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin} h(t-\tau)e^{-i\omega t}dt\, g(\tau) d\tau \qquad (1)\\\\ \end{aligned} F[g(t)h(t)]=+g(t)h(t)etdt=++g(τ)h(tτ)dτetdt(卷积展开)=++h(tτ)etdtg(τ)dτ(1) x = t − τ x=t-\tau x=tτ,则 t = x + τ t=x+\tau t=x+τ d t = d x dt=dx dt=dx,所以:
( 1 ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ h ( x ) e − i ω ( x + τ ) d x   g ( τ ) d τ = ∫ − ∞ + ∞ ∫ − ∞ + ∞ h ( x ) e − i ω x e − i ω τ d x   g ( τ ) d τ = ∫ − ∞ + ∞ h ( x ) e − i ω x ∫ − ∞ + ∞ e − i ω τ d x   g ( τ ) d τ ( x 是在 τ 的积分中是常量 , 可以移出来 ) = g ( ω ) ⋅ h ( ω ) \begin{aligned} (1)&=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin} h(x)e^{-i\omega (x+\tau)}dx \, g(\tau) d\tau \\ &=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin} h(x) e^{-i\omega x} e^{-i\omega \tau} dx \, g(\tau) d\tau \\ &=\int_{-\infin}^{+\infin}h(x) e^{-i\omega x} \int_{-\infin}^{+\infin} e^{-i\omega \tau} dx\, g(\tau) d\tau \qquad (x是在\tau的积分中是常量,可以移出来)\\ &=g(\omega) \cdot h(\omega) \end{aligned} (1)=++h(x)e(x+τ)dxg(τ)dτ=++h(x)exeτdxg(τ)dτ=+h(x)ex+eτdxg(τ)dτ(x是在τ的积分中是常量,可以移出来)=g(ω)h(ω)其中 ω = 2 π f \omega=2\pi f ω=2πf
证毕。 ■ \blacksquare

小结

上述为时域卷积定理的公式及证明,频域卷积定义与之类似。所以连续变量函数的卷积定理为:

时域卷积定理为: F [ g ( t ) ∗ h ( t ) ] = G ( ω ) ⋅ H ( ω ) \mathcal{F}[g(t)*h(t)]=G(\omega) \cdot H(\omega) F[g(t)h(t)]=G(ω)H(ω)

频域卷积定理为: F [ g ( t ) ⋅ h ( t ) ] = 1 2 π   G ( ω ) ∗ H ( ω ) \mathcal{F}[g(t)\cdot h(t)]={\frac1 {2\pi}} \, G(\omega) * H(\omega) F[g(t)h(t)]=2π1G(ω)H(ω)

离散变量序列

卷积定理

对于离散变量序列,有着与连续变量函数类似的定理,这里 F \mathcal{F} F 表示离散傅里叶变换算子,设两个序列 g [ n ] g[n] g[n] h [ n ] h[n] h[n] 的傅里叶变换为 G G G H H H
G ( f ) ≜ F { g } ( f ) = ∑ n = − ∞ ∞ g [ n ] ⋅ e − i 2 π f n    , f ∈ R H ( f ) ≜ F { h } ( f ) = ∑ n = − ∞ ∞ h [ n ] ⋅ e − i 2 π f n    . f ∈ R \begin{aligned} G(f) &\triangleq \mathcal{F}\{g\}(f) = \sum_{n=-\infty}^{\infty} g[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}\\ H(f) &\triangleq \mathcal{F}\{h\}(f) = \sum_{n=-\infty}^{\infty} h[n]\cdot e^{-i 2\pi f n}\;. \quad f \in \mathbb{R} \end{aligned} G(f)H(f)F{g}(f)=n=g[n]ei2πfn,fRF{h}(f)=n=h[n]ei2πfn.fR

序列 g g g h h h 的离散卷积的定义为:

r [ n ] ≜ ( g ∗ h ) [ n ] = ∑ m = − ∞ ∞ g [ m ] ⋅ h [ n − m ] = ∑ m = − ∞ ∞ g [ n − m ] ⋅ h [ m ] . r[n] \triangleq (g * h)[n] = \sum_{m=-\infty}^\infty g[m]\cdot h[n - m] = \sum_{m=-\infty}^\infty g[n-m]\cdot h[m]. r[n](gh)[n]=m=g[m]h[nm]=m=g[nm]h[m]. ( g ∗ h ) [ n ] (g * h)[n] (gh)[n]也可以表示为 g [ n ] ∗ h [ n ] g[n]*h[n] g[n]h[n]

离散序列的卷积定理为:

R ( f ) = F { g ∗ h } ( f ) =   G ( f ) H ( f ) R(f) = \mathcal{F}\{g * h\}(f) =\ G(f) H(f) R(f)=F{gh}(f)= G(f)H(f) \quad
R ( ω ) = F { g ∗ h } ( ω ) =   G ( ω ) H ( ω ) R(\omega) = \mathcal{F}\{g * h\}(\omega) =\ G(\omega) H(\omega) R(ω)=F{gh}(ω)= G(ω)H(ω)

证明

本证明来自劉奕文教授的Lecture《The Discrete-Time Fourier Transform and
Convolution Theorems: A Brief Tutorial》(pdf)

Y ( ω ) = ∑ n = − ∞ ∞ y [ n ] e − j ω n = ∑ n = − ∞ ∞ ( ∑ m = − ∞ ∞ g [ m ] ⋅ h [ n − m ] ) e − j ω n = ∑ m = − ∞ ∞ g [ m ] ( ∑ m = − ∞ ∞ h [ n − m ] e − j ω n ) = ∑ m = − ∞ ∞ g [ m ] ( ∑ m = − ∞ ∞ h [ n − m ] e − j ω ( n − m )   e − j ω ( m ) ) = ∑ m = − ∞ ∞ g [ m ] e − j ω ( m ) ( ∑ m = − ∞ ∞ h [ n − m ] e − j ω ( n − m ) ) = ∑ m = − ∞ ∞ g [ m ] e − j ω ( m ) H ( ω ) = G ( ω ) H ( ω ) \begin{aligned} Y(\omega) &= {\sum_{n=-\infty}^\infty }y[n]e^{-j\omega n} \\ &={\sum_{n=-\infty}^\infty } \Bigg( {\sum_{m=-\infty}^\infty } g[m] \cdot h[n-m] \Bigg)e^{-j\omega n} \\ &={\sum_{m=-\infty}^\infty } g[m] \Bigg( {\sum_{m=-\infty}^\infty } h[n-m] e^{-j\omega n} \Bigg) \\ &={\sum_{m=-\infty}^\infty } g[m] \Bigg( {\sum_{m=-\infty}^\infty } h[n-m] e^{-j\omega (n-m)}\, e^{-j\omega (m)}\Bigg) \\ &={\sum_{m=-\infty}^\infty } g[m] e^{-j\omega (m)} \Bigg( {\sum_{m=-\infty}^\infty } h[n-m] e^{-j\omega (n-m)} \Bigg) \\ &={\sum_{m=-\infty}^\infty } g[m] e^{-j\omega (m)} H(\omega) \\ &=G(\omega) H(\omega) \\ \end{aligned} Y(ω)=n=y[n]ejωn=n=(m=g[m]h[nm])ejωn=m=g[m](m=h[nm]ejωn)=m=g[m](m=h[nm]e(nm)e(m))=m=g[m]e(m)(m=h[nm]e(nm))=m=g[m]e(m)H(ω)=G(ω)H(ω) ■ \blacksquare

小结

上述为时域卷积定理的公式及证明,频域卷积定义与之类似。所以离散变量序列的卷积定理为:

时域卷积定理为: F [ g ∗ h ] = G ( ω ) ⋅ H ( ω ) \mathcal{F}[g*h]=G(\omega) \cdot H(\omega) F[gh]=G(ω)H(ω)

频域卷积定理为: F [ g ⋅ h ] = 1 2 π   G ( ω ) ∗ H ( ω ) \mathcal{F}[g\cdot h]={\frac1 {2\pi}} \, G(\omega) * H(\omega) F[gh]=2π1G(ω)H(ω)

### 时域卷积与时域乘积的数学关系 时域卷积定理表明,在时域中的两个信号 \( f(t) \) 和 \( g(t) \) 的卷积,其对应的频谱是两者的频域表示 \( F(\omega) \) 和 \( G(\omega) \) 的逐点乘积[^1]。这一性质可以形式化表达如下: \[ f(t) * g(t) \leftrightarrow F(\omega)G(\omega) \] 其中,“\( *\)” 表示卷积操作。 对于离散信号而言,这种关系同样适用。假设 \( a[n] \) 和 \( b[n] \) 是两个长度分别为 \( N_1 \) 和 \( N_2 \) 的序列,则它们的线性卷积可以通过快速傅里叶变换(FFT)来高效计算。具体来说,先将两个序列补零至至少 \( N_1 + N_2 - 1 \),再分别对其进行 FFT 变换得到频域表示 \( A[k] \) 和 \( B[k] \)[^3]。随后在频域中执行逐点相乘运算,并通过逆 FFT (IFFT)返回到时域即可获得原始序列的卷积结果。 #### 实现方法 以下是基于 MATLAB 或 Python 中实现上述原理的一种典型代码片段: ```matlab % MATLAB Code Example A = (1:64).'; % Sequence A B = hamming(64); % Hamming window as sequence B N = length(A) + length(B) - 1; % Length of the result after convolution FA = fft(A, N); FB = fft(B, N); C_freq_domain_product = FA .* FB; C_time_domain_convolution = ifft(C_freq_domain_product); ``` 或者使用Python语言表述相同逻辑的过程: ```python import numpy as np # Define sequences a = np.arange(1, 65) b = np.hamming(64) n = len(a) + len(b) - 1 fa = np.fft.fft(a, n) fb = np.fft.fft(b, n) c_freq_domain_product = fa * fb c_time_domain_convolution = np.fft.ifft(c_freq_domain_product) ``` 以上程序展示了如何利用FFT加速传统意义上的线性卷积计算过程。值得注意的是,当处理实际应用比如图像处理等领域的大规模数据集时,这种方法尤其有效因为减少了复杂度从O(N²)降低到了大约O(N log N)[^4]。 ### 频域卷积与频域乘积的区别及其联系 另一方面,如果考虑的是频域内的卷积情况,则有相应的频域卷积定理指出:频域上的卷积对应于时域上相应函数的乘积。这意味着如果我们希望在一个领域内完成某种特定类型的组合(无论是加权平均还是其他形式),那么可以在另一个关联领域找到相对应的操作模式来进行简化或优化处理。 例如给定两个频率响应H₁(f)和H₂(f),要获取他们的综合效应可以直接做简单的代数乘法而不是复杂的积分运算;反之亦然——当我们想要知道某个系统的输入输出行为是如何相互作用影响整体性能表现时候也可以借助类似的思路去分析解决这些问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值