关于webrtc iat Histogram的一点理解

本文探讨了一种音频延迟处理算法,通过统计直方图更新计算target_level,确保解码间隔稳定性,重点介绍了峰值检测模块如何判断突发峰值。算法涉及实时概率统计、包缓存优化和峰值检测技术,适用于WebRTC实时通信系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该算法实际上是对量化抖动的一种概率统计,和音频延时直接相关,实时更新。

  • 统计直方图更新

  • target_level计算,平滑抖动,确定buffer中缓存多少个包的情况下能保证绝大多数包解码间隔稳定,没有较大的抖动。

  • 峰值检测模块DelayPeakDetector

判断为峰值突发必要条件: iat > min(2*target_level,target_level+peak_detection_threshold_)

peak_detector_中peak_history maxsize为一个比较小的值,对应为最近的统计,但似乎没有看到长时间不变情况下清除peak设置,可能我看的webrtc源码版本太老

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值