loss_based_bwe_v2简单分析

本文分析了loss_based_bwe_v2算法,该算法通过建模丢包的联合概率分布来估计合适的loss_limited_bandwidth。算法首先固定loss_limited_bandwidth,然后使用二阶牛顿方法更新inherent_loss。丢包概率由GetLossProbability计算,基于inherent和超带宽因素。目标函数采用对数形式,通过牛顿方法而非梯度下降法更新。 LossBasedBweV2::UpdateBandwidthEstimate函数负责选择使目标函数最大化的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法思想

loss_based_bwe_v2 中对丢包情况的联合概率分布进行建模,其中包括两个参数inherent_loss和loss_limited_bandwidth,在计算过程中先固定loss_limited_bandwidth,然后通过最大化联合概率函数来更新inherent_loss(二阶牛顿方法更新,非梯度下降方法)。

当然我们注意到算法本身不是为了计算inherent_loss的,而是估计合适的loss_limited_bandwidth。LossBasedBweV2::UpdateBandwidthEstimate函数中有一组候选的loss_limited_bandwidth,和上面描述的一样,每次先固定loss_limited_bandwidth,然后更新inherent_loss(这里所有候选者对应的inherent_loss的初始值均为current_estimate_.inherent_loss),在更新完inherent_loss后,则会计算目标函数,使目标函数最大的loss_limited_bandwidth、inherent_loss则是当前的最终结果,记录在current_estimate_中。

算法细节

每个包丢包的概率为 GetLossProbability()结果,里面将丢包原因分为两部分,其一是inherent其二是超带宽,observations_[]中为从tcc中得到的统计信息,对应我们要处理的样本集合,样本中包含丢包数 num_lost_packets ,收包数 num_received_packets。其联合概率为:
$$J(loss\_pro) = \prod_i{loss\_{pro}^{N\_{loss}(i)}(1-loss\_{p

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值