Lucas-Kanade光流算法 — Lucas-Kanade Method

本文深入解析了Lucas-Kanade光流算法,该算法通过假设像素变化速度一致并使用最小二乘法计算光流。文章详细介绍了算法的目标函数、权重函数以及梯度下降法求解过程。此外,还探讨了算法如何应用于图像间的变化计算,如旋转、缩放、裁剪、对比度和亮度变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lucas-Kanade光流算法通过假设像素的变化速度与其临近像素的变化一致来增加约束条件,并利用最小二乘法来计算光流【学习本文内容前,需要先了解光流的基础知识】。构建目标函数如下:
E = ∑ p ′   n e a r   p g ( p ′ ) ( u I p x ′ + v I p y ′ + I t ) 2 E = \sum_{p^{\prime}\ near\ p}g(p^{\prime})(uI_{p^{\prime}_{x}} + vI_{p^{\prime}_{y}} + I_{t})^2 E=p near pg(p)(uIpx+vIpy+It)2

其中, p ′ p^{\prime} p表示像素 p p p附近的像素(包括像素 p p p本身),它们共享速度 ( u , v ) (u,v) (u,v) g ( p ′ ) g(p^{\prime}) g(p)表示权重函数,限定每个临近像素 p ′ p^{\prime} p对像素 p p p的影响,常用的权重函数有高斯函数。对于计算目标函数 E E E取得最小值时 u u u v v v的取值,可采用梯度下降法:
{ u : = u − α ∂ E ∂ u v : = v − α ∂ E ∂ v \begin{cases} u := u - \alpha\frac{\partial{E}}{\partial{u}} \\ v := v - \alpha\frac{\partial{E}}{\partial{v}} \end{cases} {u:=uαuEv:=vαvE

其中, ∂ E ∂ u \frac{\partial{E}}{\partial{u}} uE ∂ E ∂ v \frac{\partial{E}}{\partial{v}} vE的计算式如下:
∂ E ∂ u = ∑ p ′   n e a r   p 2 g ( p ′ ) ( u I p x ′ 2 + v I p y ′ I p x ′ + I t I p x ′ ) ∂ E ∂ v = ∑ p ′   n e a r   p 2 g ( p ′ ) ( u I p x ′ I p y ′ + v I p y ′ 2 + I t I p y ′ ) \frac{\partial{E}}{\partial{u}} = \sum_{p^{\prime}\ near\ p}2g(p^{\prime})(uI_{p^{\prime}_{x}}^2 + vI_{p^{\prime}_{y}}I_{p^{\prime}_{x}} + I_{t}I_{p^{\prime}_{x}}) \\ \frac{\partial{E}}{\partial{v}} = \sum_{p^{\prime}\ near\ p}2g(p^{\prime})(uI_{p^{\prime}_{x}}I_{p^{\prime}_{y}} + vI_{p^{\prime}_{y}}^2 + I_{t}I_{p^{\prime}_{y}}) uE=p near p2g(p)(uIpx2+vIpyIpx+ItIpx)vE=p near p2g(p)(uIpxIpy+vIpy2+ItIpy)

扩展

Lucas和Kanade在1981年发表的论文 A n   I t e r a t i v e   I m a g e   R e g i s t r a t i o n   T e c h n i q u e   w i t h   a n   A p p l i c a t i o n   t o   S t e r e o   V i s i o n An\ Iterative\ Image\ Registration\ Technique\ with\ an\ Application\ to\ Stereo\ Vision An Iterative Image Registration Technique with an Application to Stereo Vision中指出,此算法还可以用于计算图像间的旋转、缩放、裁剪、对比度和亮度的变化。

F ( p ) F(p) F(p) G ( p ) G(p) G(p)分别为图像一和图像二, p p p表示像素。图像间的旋转、缩放和裁剪的关系可以构建如下表达式:
G ( p ) = F ( p + h ) A G(p) = F(p + h)A G(p)=F(p+h)A

注:原文中的公式是 G ( p ) = F ( p A + h ) G(p) = F(pA + h) G(p)=F(pA+h)。不过,我认为 G ( p ) = F ( p + h ) A G(p) = F(p + h)A G(p)=F(p+h)A表达更合适。

其中, A A A为矩阵,表示图像 F F F和图像 G G G之间的线形变化,例如:旋转矩阵。 h h h表示光流 ( u , v ) (u,v) (u,v)。可构建目标函数如下:
E = ∑ p ′   n e a r   p [ F ( p + h ) A − G ( p ) ] 2 E = \sum_{p^{\prime}\ near\ p}[F(p + h)A - G(p)]^2 E=p near p[F(p+h)AG(p)]2

图像间的对比度和亮度变化关系可以构建如下表达式:
G ( p ) = α F ( p ) + β G(p) = \alpha F(p) + \beta G(p)=αF(p)+β

其中, α \alpha α表示图像对比度变化, β \beta β表示图像亮度变化。至此,可构建新的目标函数来同时计算图像间的旋转、缩放、裁剪、对比度和亮度的变化。如下:
E = ∑ p ′   n e a r   p [ F ( p + h ) A − ( α F ( p ) + β ) ] 2 E = \sum_{p^{\prime}\ near\ p}[F(p + h)A - (\alpha F(p) + \beta)]^2 E=p near p[F(p+h)A(αF(p)+β)]2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值