Tensorflow四种交叉熵(cross entropy)算法实现和应用

本文介绍了TensorFlow中的四种交叉熵函数:sigmoid_cross_entropy_with_logits、softmax_cross_entropy_with_logits、sparse_softmax_cross_entropy_with_logits和weighted_sigmoid_cross_entropy_with_logits。交叉熵在损失函数中用于衡量模型预测值与真实值的差距。文章详细解析了每种函数的适用场景,例如sigmoid适用于多目标问题,softmax适用于互斥的多分类问题,而sparse_softmax_cross_entropy_with_logits则简化了多分类问题的输入。此外,weighted_sigmoid_cross_entropy_with_logits支持对正样本的加权。选择合适的交叉熵函数对模型训练至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow四种Cross Entropy算法实现和应用
深入理解交叉熵算法定义和TensorFlow深度学习框架的函数实现

​​​交叉熵介绍

交叉熵(Cross Entropy)是Loss函数的一种(也称为损失函数或代价函数),用于描述模型预测值与真实值的差距大小,常见的Loss函数就是均方平方差(Mean Squared Error),定义如下。

​平方差很好理解,预测值与真实值直接相减,为了避免得到负数取绝对值或者平方,再做平均就是均方平方差。注意这里预测值需要经过sigmoid激活函数,得到取值范围在0到1之间的预测值。

平方差可以表达预测值与真实值的差异,但在分类问题种效果并不如交叉熵好,原因可以参考这篇博文 https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/ 。交叉熵的定义如下,截图来自 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值