【YOLO日志文件】读取和可视化events.out.tfevents文件


前言

目的:读取和可视化events.out.tfevents文件
问题:yolo官方程序默认出的图样式和数据不够详细,如何提取出相应数据,方便自己查看详细和处理数据
方法:通过tensorboardX和tensorboard库读取数据,再通过matplotlib进行可视化

例如yolo结果数据都是固定样式图,不能方便查看其中每个点的具体数值

yolov8结果图

方法

读取数据

为了读取 .tfevents 文件,我们可以使用tensorboardtensorboardX 库的 event_accumulator 模块。展示如何使用 event_accumulator 读取 .tfevents 文件的内容:

如果下载失败可以替换清华园

  1. 安装 tensorboardX

    pip install tensorboardX
    pip install tensorboard
    
  2. 使用 event_accumulator 读取 .tfevents 文件

    from tensorboardX import SummaryWriter
    from tensorboard.backend.event_processing import event_accumulator
    
    # 指定 .tfevents 文件的路径
    log_dir = "path/to/your/tfevents/file"
    
    # 加载事件文件
    ea = event_accumulator.EventAccumulator(log_dir)
    ea.Reload
### 解决 YOLO 训练过程中缺少 `events.out.tfevents` 文件的问题 在 TensorFlow 中,`events.out.tfevents` 文件是由 TensorBoard 的 SummaryWriter 创建的日志文件。如果该文件缺失,通常意味着 SummaryWriter 没有被正确配置或启动。 为了确保日志文件能够正常生成并保存,在训练脚本中应当加入如下代码片段来初始化管理 SummaryWriter: ```python from tensorflow.python.summary import summary as tf_summary import tensorflow as tf log_dir = 'path/to/log' # 设置日志目录路径 summary_writer = tf_summary.FileWriter(log_dir) with tf.Session() as sess: merged_summary_op = tf.summary.merge_all() for step in range(training_steps): run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() _, summary = sess.run([train_op, merged_summary_op], options=run_options, run_metadata=run_metadata) summary_writer.add_run_metadata(run_metadata, 'step%d' % step) summary_writer.add_summary(summary, step) ``` 此外,还需要确认以下几点设置是否恰当: - 日志目录是否存在以及是否有写权限; - 是否调用了 `tf.summary.scalar()` 或其他类似的函数用于记录标量、图像或其他类型的摘要数据; - 在模型定义部分是否包含了必要的汇总操作(如损失值、精度等指标)以便于后续可视化分析[^1]。 通过上述方法调整后应该能有效解决 `events.out.tfevents` 文件丢失的问题,并且可以在 TensorBoard 中查看到详细的训练过程信息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值