PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本

Pasted image 20241001125133

  • 论文题目:OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
  • 发布期刊:CVPR 2024
  • 作者地址:1香港中文大学 2香港大学 3香港中文大学,深圳 4HIT,深圳
  • 代码地址:https://github.com/Pointcept

介绍

这篇论文主要研究了3D语义分割领域中的一种新型稀疏卷积神经网络(CNN),称为全自适应3D稀疏CNN(Omni-Adaptive 3D Sparse CNNs,简称OA-CNNs)。研究的重点是提升传统稀疏CNN的性能,使其在精确度和计算效率上都能与基于Transformer的网络模型相媲美或超越。

研究中指出,现有的稀疏CNN在3D语义分割任务上通常不如基于Transformer的模型,原因在于其缺乏足够的自适应性。为了解决这一问题,论文提出了两个关键的技术创新:

  1. 空间自适应感受野(Spatially Adaptive Receptive Fields):通过改进卷积核的设计,使网络能够根据输入数据的不同部分自动调整感受野的大小,从而更好地处理不同的几何结构和复杂性。
  2. 自适应关系卷积(Adap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值