机器学习算法导论(摘自赵卫东《机器学习》)

本文介绍了机器学习的三大类别:监督学习(如逻辑回归、决策树)、无监督学习(如聚类、关联分析)和强化学习。监督学习涉及分类和数字预测,无监督学习包括聚类和关联分析,而强化学习则依赖于环境反馈。机器学习任务包括回归、分类、聚类和关联分析,深度学习作为重要的分支,适用于多种场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法分类

  机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的方法,可以分成下面几种类别:监督学习、无监督学习、强化学习。

  (1)监督学习是从有标记的训练数据中学习一个模型,然后根据这个模型对未知样本进行预测。其中,模型的输入是某一样本的特征,函数的输出是这一样本对应的标签。常见的监督学习算法包括回归分析和统计分类。监督学习包括分类和数字预测两大类,前者包括逻辑回归、决策树、KNN、随机森林、支持向量机、朴素贝叶斯等,后者包括线性回归、KNN、Gradient Boosting和AdaBoost等。

  (2)无监督学习又称非监督式学习,它的输入样本并不需要标记,而是自动从样本中学习特征实现预测。常见的无监督学习算法有聚类和关联分析等,在人工神经网络中,自组织映射(SOM)和适应性共振理论(ART)是最常用的无监督学习。

   (3)强化学习是通过观察来学习做成什么样的动作。每个动作都会对环境有所影响,学习对象根据观察到的周围环境的反馈来做出判断。强化学习强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的行为习惯。

二、任务分类

  根据机器学习的任务分类,可以分为回归、分类、聚类三大常见机器学习任务。某些机器学习算法可能同时属于不同的分类,如深度学习算法可能存在于监督学习,也可能用于强化学习,在实践过程中可依据实际需要进行选择。

  (1)分类算法:主要的分类算法包括决策树、支持向量机(Support Vector Machine,SVM)、最近邻(K-Nearest Neighbor,KNN)算法、贝叶斯网络(Bayes Network)和神经网络等。

  (2)聚类算法:聚类方法可以基于层次的聚类(Hierarchical Method)、基于划分的聚类(Partition Method,PAM)、基于密度的聚类、基于约束的聚类、基于网络的聚类等。聚类应用领域广泛、可以用于发现不同的企业客户群体特征

### 关于《Python机器学习实战案例》 由赵卫东和董亮共同编著的《Python机器学习实战案例》是一本专注于通过实际项目来讲解如何利用Python实现机器学习算法和技术的书籍[^1]。该书不仅涵盖了理论基础,还提供了丰富的实践案例,帮助读者深入理解并掌握机器学习的核心概念及其应用。 全书的内容设计注重实用性,适合希望从零开始或者进一步提升自己技能水平的学习者阅读。书中涉及的主题广泛,包括但不限于数据预处理、特征工程、分类回归分析以及深度学习等内容,并且每章都配有详细的代码示例以便于动手操作验证所学知识点。所有源代码可以在指定GitHub仓库中找到,这为学习者提供了一个良好的平台去探索更多可能性。 对于那些对向量数据库、大语言模型的知识库扩展感兴趣的人群来说,《Python机器学习实战案例》同样是一个不错的起点,因为它能够奠定坚实的编程与算法基础,从而为进一步研究高级话题打下良好根基[^2]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 加载数据集 data = pd.read_csv('example.csv') # 数据分割 X_train, X_test, y_train, y_test = train_test_split(data.drop('target', axis=1), data['target'], test_size=0.3) # 创建逻辑回归实例 model = LogisticRegression() # 训练模型 model.fit(X_train, y_train) # 输出得分 print(f'Test Accuracy: {model.score(X_test, y_test)}') ``` 上述代码片段展示了如何使用Pandas加载CSV文件并对其中的数据进行简单的训练测试划分,接着运用Scikit-Learn中的Logistic Regression完成建模过程最后评估其表现情况。这是典型的基于Python开展机器学习项目的简化流程之一,在《Python机器学习实战案例》一书中会有更详尽版本及相关变体介绍给到大家参考学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值