玩AI第一步——显卡环境配置安装

目录

显卡驱动安装

CUDA环境安装


显卡驱动安装

玩ai,首先第一步是需要安装好显卡驱动

如果是n卡,则需要从官网下载对应的驱动,可点击下方链接去搜索自己显卡对应的驱动。

如果不知道自己是什么显卡,可以下载鲁大师或者驱动精灵找到自己的显卡配置

下载 NVIDIA 官方驱动 | NVIDIA

搜索过后,找到了自己的显卡,一般推荐安装最新的驱动,因为其他对应的环境一般都市向下兼容的,而且,最新的驱动,更方便后续的pytorch安装等。

显卡驱动下载好后,一直下一步下一步即可安装完成。安装完成后,可在桌面右键查看显卡信息,就表示显卡安装成功!

如图:

点击进去查看控制面板:

CUDA环境安装

点击系统信息,就可以看到cuda对应的版本和当前显卡的cuda核心数,核心数越多,表示显卡算力越强!

如图,可以看到我的显卡的cuda版本是 12.4 

则可以去cuda官方下载对应的版本安装。

CUDA Toolkit Archive | NVIDIA Developer

下载后一直下一不即可,可以勾选配置环境变量的选项。省去后面麻烦的配置环境变量的步骤

怎么确保cuda正确安装?

使用这个命令即可确认,同时查看cuda的版本

nvcc --version

### NVIDIA K80 GPU 的性能优化及支持框架 #### 支持的深度学习框架 NVIDIA K80 是一款基于 Kepler 架构的 GPU,在许多云服务提供商中被广泛用于机器学习和科学计算任务。它支持主流的深度学习框架,例如 TensorFlow、PyTorch 和 MXNet 等[^1]。这些框架通过 CUDA 和 cuDNN 库充分利用 K80 的多流处理器能力来加速神经网络训练。 #### 性能优化策略 为了最大限度地发挥 NVIDIA K80 的潜力,可以采用以下几种技术手段: - **批量大小调整**:适当增加批处理大小能够更高效利用 GPU 资源,减少每单位时间内启动新批次所需的开销[^2]。 - **混合精度训练**:尽管 K80 不具备专门针对 FP16 数据类型的 Tensor Cores (这是 V100 或 A100 才有的特性),但仍可以通过模拟实现半精度浮点运算以节省内存并加快速度[^3]。 - **数据预取与加载优化**:确保输入管道不会成为瓶颈非常重要;使用异步 I/O 操作或者提前缓存常用的数据片段可以帮助维持较高的 GPU 利用率[^4]。 ```python import tensorflow as tf # Example of enabling mixed precision training with TF-Keras API on older GPUs like K80. policy = tf.keras.mixed_precision.Policy('float16') tf.keras.mixed_precision.set_global_policy(policy) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ``` 上述代码展示了如何在不完全依赖硬件特性的前提下启用混合精度模式来进行模型训练。 #### 局限性和替代方案 需要注意的是,相较于更新一代的产品如 Volta(V100) 及 Ampere(A100), K80 在几个方面存在明显劣势: - 更低的基础频率与峰值算力; - 较少数量的核心单元数; - 缺乏专用张量核心(Tensor Core). 对于追求极致效能的应用场合来说, 如果条件允许的话升级至更高阶型号会带来显著收益. ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值