大数据开发者:如何快速熟悉新公司的技术环境

image.png

作为一名大数据开发者,加入新公司后快速熟悉技术环境是一项重要而又具有挑战性的任务。本文将分享我个人的经验,介绍三个关键步骤,帮助你迅速适应新的工作环境。

1. 了解系统架构

记得我刚加入现在的公司时,面对庞大而复杂的大数据处理系统,一时感到无从下手。这时,我采取的第一个行动就是寻求团队中资深技术人员的帮助。
image.png

实践建议:

  • 安排与系统架构师或技术负责人的一对一会议
  • 请他们介绍系统设计的初衷和演进历程
  • 关注关键的技术选型及其背后的考量
    image.png

示例对话:

“嗨,张工,能否给我介绍一下我们的实时数据处理pipeline是如何设计的?为什么选择了Kafka和Flink的组合?”

通过这样的交流,我快速了解到公司的实时数据处理方案是基于Kafka进行消息队列管理,而Flink则负责复杂的流处理任务。这个组合既保证了数据的实时性,又提供了强大的计算能力。

在了解系统架构的过程中,我还特别关注了公司的数据仓库架构。通过与数据架构师的交流,我了解到公司采用了Lambda架构:

  1. 批处理层:使用Hadoop HDFS存储原始数据,Hive进行批量ETL处理。
  2. 速度层:使用Kafka接收实时数据流,Spark Streaming进行实时处理。
  3. 服务层:使用HBase作为数据服务层,为上层应用提供低延迟的查询服务。

这种架构既满足了大规模数据的批处理需求,又能够处理实时数据流,是一个非常典型的大数据解决方案。

image.png

2. 了解领域模型

在初步理解系统架构后,下一步就是深入了解系统的核心业务逻辑和数据模型。

image.png

实践建议:

  • 查阅数据库schema文档,重点关注核心业务表
  • 阅读API文档,了解系统对外提供的服务
  • 绘制简单的ER图,帮助理解实体之间的关系

image.png

示例:

在我们的电商大数据平台中,order表是核心业务表之一。通过分析其结构,我们可以了解订单的生命周期:

CREATE TABLE `order` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `user_id` bigint(20) NOT NULL,
  
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值