Linux下显卡掉卡,报错提示: rm_init_adapter failed, device minor number 7 Failed to copy vbios to system memory

环境说明:
Centos7 +Nvidia T4显卡
问题现象:
运行一段时间后,显卡掉卡,需要重新安装驱动解决。并且日志中报错:

Apr 9 12:03:32  kernel: NVRM: GPU 0000:b2:00.0: rm_init_adapter failed,
device minor number 7
Apr 9 12:03:48  kernel: NVRM: GPU 0000:14:00.0: Failed to copy vbios to
system memory.
Apr 9 12:03:48  kernel: NVRM: GPU 0000:14:00.0: RmInitAdapter failed!
(0x30:0xffff:755)
Apr 9 12:03:48  kernel: NVRM: GPU 0000:14:00.0: rm_init_adapter failed,
device minor number 0
Apr 9 12:03:48  kernel: NVRM: GPU 0000:15:00.0: Failed to copy vbios to
system memory.
Apr 9 12:03:48  kernel: NVRM: GPU 0000:15:00.0: RmInitAdapter failed!
(0x30:0xffff:755)
Apr 9 12:03:48  kernel: NVRM: GPU 0000:15:00.0: rm_init_adapter failed,
device minor number 1

问题解决:
显卡使用时会加载驱动,未使用时会卸载显卡驱动,驱动循环加载导致系统bug,出现掉卡,宕机等情况。所以需要把显卡驱动持久化,保持加载状态。

显卡持久化介绍:
启用持久性模式后,即使没有活动的客户端 (such as X11 or nvidia-smi),NVIDIA 驱动程序也会保持加载状态。这样可以最大程度地减少与运行依赖的应用程序 (例如 CUDA 程序) 相关的驱动程序加载延迟。适用于所有支持 CUDA 的产品。仅 Linux。

Persistence-M (Persistence Mode)
persistence mode 持续模式默认关闭。persistence mode 能够让 GPU 更快响应任务,待机功耗增加。关闭 persistence mode 同样能够启动任务。

启动命令:

nvidia-smi -pm 1

启动之前:
在这里插入图片描述

启动之后:
在这里插入图片描述

参考链接:
https://www.freesion.com/article/4201198085/

<think>好的,我现在需要解决用户提到的“NVRM GPU RmInitAdapter failed”错误。首先,用户的问题是关于NVIDIA显卡驱动在初始化适配器时失败的问题,可能出现在使用GPU进行机器学习训练时,尤其是在Jupyter环境中。用户之前提到过显存不足的问题,现在遇到的是驱动初始化失败。 首先,我应该回忆一下这个错误的常见原因。通常,这类错误可能与显卡驱动有关,比如驱动损坏、版本不兼容,或者硬件故障。另外,显存管理问题也可能导致驱动初始化失败,尤其是在多次运行任务后显存未被正确释放的情况下。 接下来,我需要验证用户的环境。用户可能使用的是NVIDIA显卡,并且运行的是Linux系统,因为这类错误在Linux上更常见。不过,也有可能出现在Windows上。用户之前遇到显存不足的问题,可能已经尝试过一些方法,比如重启电脑,但这次的问题更严重,驱动无法初始化适配器。 可能的解决步骤包括: 1. **检查驱动状态**:使用命令如`nvidia-smi`查看驱动是否正常加载。如果命令无法执行,说明驱动可能未正确安装或加载失败。 2. **重新安装或更新驱动**:如果驱动损坏,重新安装或更新到最新版本可能解决问题。需要确认用户当前的驱动版本是否兼容他们的GPU型号和操作系统。 3. **检查硬件连接**:物理连接问题,比如松动的显卡或电源问题,可能导致初始化失败。建议用户检查硬件连接。 4. **查看系统日志**:通过`dmesg`或`journalctl`查看系统日志,寻找更详细的错误信息,帮助定位问题。 5. **显存释放问题**:用户之前遇到显存不足,可能有一些残留进程占用显存,导致新的任务无法分配资源。使用`fuser -v /dev/nvidia*`查找并终止相关进程。 6. **禁用Nouveau驱动**:在Linux系统中,开源Nouveau驱动可能与NVIDIA官方驱动冲突,导致初始化失败。需要禁用Nouveau并重启。 7. **BIOS设置**:某些情况下,主板的BIOS设置可能影响PCI设备初始化,检查是否启用相关选项。 8. **硬件故障**:如果以上步骤无效,可能需要考虑显卡本身存在硬件问题,尝试在其他机器上测试显卡。 此外,用户可能是在运行机器学习框架如TensorFlow或PyTorch时遇到此问题,需要确保CUDA和cuDNN版本与驱动兼容。兼容性问题也可能导致初始化失败。 需要提醒用户逐步尝试这些步骤,并注意在操作过程中备份重要数据,特别是在修改系统设置或驱动时,避免系统不稳定。 最后,生成相关问题,帮助用户进一步排查可能的相关问题,比如驱动安装步骤、显存管理工具的使用,或者硬件诊断方法。</think>### NVRM GPU RmInitAdapter失败解决方案 **问题分析** `NVRM GPU RmInitAdapter failed` 错误通常与NVIDIA显卡驱动初始化失败相关,可能由驱动冲突、硬件问题或显存管理异常导致。以下是分步解决方案: --- #### 1. **检查驱动状态与日志** - **查看驱动是否加载** 在终端运行: ```bash nvidia-smi ``` - 若提示`NVIDIA-SMI has failed`,说明驱动未正常加载。 - 若输出包含GPU信息,但后续任务失败,可能是显存分配问题。 - **查看系统日志** 使用以下命令定位具体错误: ```bash dmesg | grep NVRM # Linux系统 或 journalctl -b | grep NVRM # Systemd系统 ``` 日志中可能包含更详细的硬件初始化失败原因(如PCIe通信错误)[^1]。 --- #### 2. **重新安装或更新驱动** - **卸载旧驱动** ```bash sudo apt purge nvidia* # Ubuntu/Debian sudo dnf remove nvidia* # Fedora ``` - **安装官方驱动** 从[NVIDIA官网](https://www.nvidia.com/Download/index.aspx)选择匹配GPU型号和操作系统的驱动版本,例如: ```bash sudo sh NVIDIA-Linux-x86_64-535.129.03.run ``` 安装时需关闭图形界面(如使用`sudo telinit 3`进入命令行模式)。 --- #### 3. **释放显存占用** - **终止残留进程** 使用以下命令查找占用显存的进程: ```bash fuser -v /dev/nvidia* ``` 手动终止相关进程(如残留的Python内核或Jupyter进程): ```bash kill -9 <PID> ``` - **重启显示管理器** 在Linux中重启显示服务: ```bash sudo systemctl restart display-manager # 如GDM、LightDM ``` --- #### 4. **禁用冲突组件** - **禁用Nouveau驱动(Linux)** 编辑文件`/etc/modprobe.d/blacklist.conf`,添加: ```bash blacklist nouveau options nouveau modeset=0 ``` 更新内核并重启: ```bash sudo update-initramfs -u ``` - **关闭Secure Boot** 部分系统因安全启动(Secure Boot)阻止第三方驱动加载,需在BIOS中禁用。 --- #### 5. **硬件检查** - **重新插拔显卡** 关机后检查GPU是否插紧,并确保电源供电充足。 - **测试其他PCIe插槽** 更换主板上的PCIe插槽,排除接口接触不良问题。 - **多GPU系统排查** 若使用多,逐一测试单运行,定位故障硬件。 --- #### 6. **兼容性配置** - **调整CUDA版本** 确保CUDA版本与驱动兼容(参考[NVIDIA文档](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html))。 - **限制Jupyter显存占用** 在代码中添加显存释放逻辑(如TensorFlow): ```python import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) ``` --- ### 相关问题 1. **如何验证NVIDIA驱动是否安装成功?** 2. **CUDA版本与显卡驱动不兼容时如何解决?** 3. **Linux系统中如何永久禁用Nouveau驱动?** 4. **多GPU训练时如何避免显存分配冲突?** [^1]: 参考站内引用:引用[1]:机器学习:【2】jupyter显存不足报错Blas GEMM launch failed的解决方案。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值