数值积分方法

数值积分是计算无法解析求解定积分的近似解的重要工具。本文详细介绍了基于多项式差值的面积公式,包括左/中/右矩形公式、梯形公式和辛普森公式,并对误差进行了估计。此外,还探讨了拉格朗日插值法,包括分段线性插值和拉格朗日型二次插值多项式。最后,讲解了三次样条插值法及其端点条件,如自由边界、固定边界和非节点边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数值积分是工程师和科学家经常使用的基本工具,用来计算无法解析求解的定积分的近似解。
如:Φ(x)=x0t3et1dt不存在Φ(x)的解析解,要求Φ(5)
那么我们就要通过数值积分的方法来计算,数值积分的目的是,通过在有限个采样点上计算f(x)的值来逼近 f(x)在区间[a,b]上的定积分.
a=x0<x1<<xM=b. 称形如

这里写图片描述

且具有性质 baf(x)dx=Q[f]+E[f] 的公式为数值积分或 面积公式。项 E[f] 称为积分的截断误差,值 { xk}Mk=0 称为 面积节点 { wk}Mk=0 称为

下面介绍几种常用的数值积分方法。

基于多项式差值的面积公式

通过M+1个等距点{ (xk,f(xk))}Mk=0存在唯一的次数小于等于M的多项式PM(x)。当用该多项式来近似[a,b]上的f(x)时,PM(x)的积分就近似等于f(x)的积分,这类公式称为牛顿-科特斯公式。当使用采样点x0=axM=b时,称为闭型牛顿-科特斯公式。

这里写图片描述

左/中/右矩形公式、梯形公式

左/中/右矩形公式

这里写图片描述

梯形公式
这里写图片描述

图形如下
这里写图片描述


辛普森公式

推导过程

f(x)[a,b]上有定义,将区间[a,b]分割成n等分(取 n 为偶数),则有a=x0<x1<<xM=b,其中

xi=a+iΔxi=0,1,,n,Δx=ban

这里我们想通过 (x0,f(x0)),(x1,f(x1)),(x2,f(x2)) 三点抛物线 g(x)=αx2+βx+γ 来取代 f(x) [x0,x2] 的定义,今儿求出它的近似积分值(如图),最后用累加的方式求得 f(x) [a,b] 上的近似积分。
这里写图片描述

由假设我们有
这里写图片描述
这里写图片描述

所以可得
baf(x)dx=x2x0+x4x2++xnxn2f(x)dx

这里写图片描述

误差估计

若令Sn=Δx3[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(xn2)+4f(xn1)+f(xn)]f(4)(x)[a,b]上连续,则我们可以估计出辛普森公式的误差值为

这里写图片描述

例题1

试用辛普森公式估计10ex2dx,取n=6
解:
f(x)=ex2,Δx=16

这里写图片描述


拉格朗日插值

分段线性插值

例如:函数f(x)=11+x2如果在区间[55]上取11个等距节点:xk=5+k(k=0,1,2,...,10),由Lagrange插值公式可得到f(x)10L10(x)。如图所示:

这里写图片描述

L10(x) 仅在区间的中部能较好的逼近函数 f(x) ,在其它部位差异较大,而且越接近端点,逼近效果越差。
可以证明,当节点无限加密时, Ln(x) 也只能在很小的范围内收敛,这一现象称为 Runge现象。它表明通过增加节点来提高逼近程度是不适宜的,因而不采用高次多项式插值。

推导过程

已知函数f(x)在区间[xk,xk+1]的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=P1(x)使得yk=f(xk),yk+1=f(xk+1), 其几何意义是已知平面上两点(xk,yk),(xk+1,yk+1),求一条直线过该已知两点。
由直线的点斜式公式可知:

P1(x)=yk+yk+1ykxk+1xk(xxk)

把此式按照 yk
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值