【机器学习】关于注意力模型(Attention-model)的理解和应用

本文介绍了注意力模型在序列处理领域的应用,尤其是机器学习中的Encoder-Decoder结构和Attention-model。注意力模型通过量化思想,赋予序列中不同部分不同的权重,解决了传统Encoder-Decoder固定长度语义编码的问题,尤其在语言翻译中表现优异。此外,还探讨了如何将Attention模型应用于分类任务,如情感分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注意力模型是近年来在序列处理领域新提出的机器学习方法,在语言翻译等领域取得了不错的效果。要想了解注意力模型,那么必须对现在的机器学习各领域有一定的了解,而且要了解encoder-decoder基本思想。

首先可以大致的概括下目前的机器学习尤其是深度学习的各个领域。图像方面,CNN当之无愧是绝对的主力,并且在各大公司的研究下仍然在发力。NLP(自然语言处理)方面,RNN型的网络仍然占多数,但是自从Facebook用CNN搭建的翻译模型超越谷歌的Seq2Seq以后,CNN已经开始蚕食RNN的领域。序列数据的处理不再是RNN类网络一家独大。

Attention-Model是Seq2Seq的一种,所谓的sequence就是指序列数据,序列数据处理一般有Seq2Label模型,如心电图分类、情感分析等。和Seq2Seq模型,如语言翻译和序列预测。

Encoder-Decoder

Attention-model是在编码-解码模型的基础上改进而来,所以在了解Attention-model前需要了解Encoder-Decoder的基本原理。

由上图可以清楚的看出,该结构由两部分组成,前面是由编码器处理输入信号,最后输出一个包含着序列信息的vector。解码器的输入是自身的input然后加上前面编码器输出的编码信息。

编码器和解码器的网络可以选择任意的结构,但是在NLP中选择RNN类网络的居多,如常用的LSTM和GRU等。

以语言翻译为例,前面编码器的输入是想要翻译的语言序列。经过编码器后产生一个代表着输入语句的语义编码C,然后解码器使用语义编码C、编码器的输出和一个起始符作为输入,共同完成解码工作。

我们可以看出该结构有一个明显的短板,即语义编码C是固定长度的。如果前面的序列比较长,那么语义编码C中包含的信息大部分都是关于序列后段的,前段的信息很可能已经被替换掉或者覆盖掉。因此序列越长这个问题就会越明显。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值