yarn 的 job 提交过程

本文详细阐述了YARN环境中Job提交的过程,包括客户端、ResourceManager、NodeManager和MRAppMaster等角色的功能与交互,以及从Job提交到资源分配、任务执行直至Job完成的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yarn 的 job 提交过程

各个角色作用:

resourcemanager的作用

resourcemanager
	1)接受客户端的请求  job提交
	2)接受mrappmaster的请求
	3)进行资源分配和调度
	4)接受nodemanager 心跳
	5)监控nodemanager 资源使用状况

nodemanager的作用

nodemanager:
	1)接受resourcemanager 命令
	2)接受mrappmaster 命令
	3)向rm发送心跳
	4)监控自身的资源使用状况

job的提交过程:

  • 1)客户端向resourcemanager提交job请求 (hadoop jar wc.jar com.aura.cn.mapreduce.Driver /input/wordcount /output/wordcount0)
  • 2)resourcemanager向客户端返回job_id及共享资源路径(HDFS:/tmp/hadoop-yarn/staging/jacob/.staging/…)
  • 3)客户端将共享资源提交到hdfs上的共享资源的目录下
  • 4)客户端向resourmanager响应(共享资源放置完成),并真正提交应用程序Application_id
  • 5)resourcemanager会为当前的application分配节点,用于启动当前应用程序的MRAppMaster
  • 6)resourcemanager会到对应的资源节点上启动MRAppMaster
  • 7)MRAppMaster去共享资源路径下下载共享资源
  • 8)MRAppMaster初始化当前的应用程序,生成当前application的工作簿(进度)
  • 9)MRAppMaster向resourcemanager申请maptask运行需要的资源
  • 10)resourcemanager向MRAppMaster返回对应的资源节点
  • 11)MRAppMaster到对应的资源节点启动maptask | reducetask
  • 12)maptask会到共享资源路径下下载共享资源(jar包)
  • 13)maptask开始运行
  • 14)maptask在运行期间向MRAppMaster汇报自己的进度和状态
  • 15)MRAppMaster获取到有一个maptask运行完成之后,到对应的节点去启动reducetask任务
  • 16)reducetask会到共享资源路径下下载共享资源
  • 17)reducetask开始运行(shuffle过程发生在16-17步之间)
  • 18)reducetask运行期间向MRAppMaster汇报自己的进度和状态
  • 19)当maptask | reducetask 运行完成之后,MRAppMaster就进行资源回收
  • 20)整个application运行运行完成,MRAppMaster向resourcemanager申请注销自己,并向客户端返回运行结果
    在这里插入图片描述
yarn 的job提交过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值