通过阅读文献总结了一下不同人脸检测方法的优缺点。
首先人脸检测方法大致分为三类吧,
1)基于特征的人脸检测
整体轮廓法
肤色检测法
器官分布法
2)模板匹配法的人脸检测
镶嵌图法(又称马赛克法)
预定模板匹配法
变形模板法
3)基于adaboost 算法的人脸检测
基于肤色的人脸检测算法的优点是算法实现简单,不需要离线训练,计算速度快,检测率高,多多角度倾斜的人脸及表情变化不敏感等特点,缺点是遇见率高,对非人脸肤色区域(手脚、脖子等)及背景中的类肤色区域容易产生误判。同时单一固定的阈值使得这种算法鲁棒性较差,不适应光照、阴影等外界因素变化的环境,因此这种算法的局限性,只能应用在简单背景下的肤色检测。
基于Gabor+BP神经网络的人脸检测算法的优点是该算法理解起来简单、学习能力强,计算量小,具有较强的抗噪声能力,可以通过扩大训练样本集提高准确率,很容易训练得到一个人脸检测系统。缺点是存在训练时间长导致收敛速度慢,学习效率低,没有理论指导对中间层数及各中间层节点数的选取,学习新样本的同时不能很好的记住旧样本的问题。
基于Hog+SVM的人脸检测算法的优点是对两类目标的分类问题比较有效,缺点是SVM的训练需要大量的存储空间,并且训练速度较慢。
基于Harr+AdaBoost 的人脸检测算法通过实验我们可以得到该方法的优点是对不同肤色的人群,有一定旋转角度的人脸以及光照变化具有较高的鲁棒性,检测率高,误检率低。不足之处是每幅图像的训练特征维数庞大,训练时间较长;虽然级联分类器构造简单方便,但会以牺牲一定的速度和精度为代价,同时,对类似人脸灰度分布的背景区域容易误判;对图像俯仰超过30度摇摆和倾斜超过45度的多角度人脸检测效果不是很好。