深度学习之心得——dropout

本文介绍了Dropout和BatchNorm两种防止神经网络过拟合的技术。Dropout通过在训练过程中随机关闭部分节点来提高模型的泛化能力,通常应用于全连接层。而BatchNorm则通过对输入进行标准化来稳定训练过程,常置于激活函数之前。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作用:

        防止过拟合

什么时候过拟合:

        网络参数多,训练数据少的时候,容易过拟合。

原理:

        前向传播过程中暂时屏蔽一些节点,暂时不更新它的参数,这样就可以训练多个不同的网络,降低过拟合的可能。

Dropout层的位置

Dropout一般放在全连接层防止过拟合,提高模型返回能力,由于卷积层参数较少,很少有放在卷积层后面的情况,卷积层一般使用batch norm。
全连接层中一般放在激活函数层之后。

BatchNorm

BatchNorm归一化放在激活层前后好像都有,最初LeNet有一种归一化放在了激活层池化层后面,而现在普遍放在激活层前。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值