人工智能-分类模型-评估指标(一):混淆矩阵【准确率=所有预测正确的样本/总的样本、精确率=将正类预测为正类/所有预测为正类、召回率=将正类预测为正类/所有真正的正类、F1-Measure】【代码】

本文详细介绍了混淆矩阵及其在模型评估中的作用,包括准确率、精确率、召回率和F1-Measure的概念。准确率虽直观但易受样本不平衡影响,精确率和召回率则需要权衡。通过案例和代码(使用sklearn的classification_report)阐述了如何理解和运用这些指标,强调在实际应用中选择适合场景的评估指标的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作。

在分类型模型评判的指标中,常见的方法有如下三种:

  • 混淆矩阵(也称误差矩阵,Confusion Matrix)
  • ROC曲线
  • AUC面积

在这里插入图片描述

一、混淆矩阵

混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。

对于二分类的模型,预测结果与实际结果分别可以取0和1。我们用N和P代替0和1,T和F表示预测正确和错误。将他们两两组合,就形成了下图所示的混淆矩阵(注意:组合结果都是针对预测结果而言的)。

由于1和0是数字,阅读性不好,所以我们分别用P和N表示1和0两种结果。变换之后为PP,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值