Transformer-Embedding层详解03:从头训练时 “Embedding层” 的梯度幅值为何通常高于 “全连接层”【Embedding层梯度幅值较高的原因分析】

Embedding层梯度幅值较高的原因分析

1. Embedding层梯度计算 vs 全连接层梯度表达式

Embedding层作为查找表的梯度计算: 在NLP模型中,Embedding层通常以one-hot向量作为输入,将离散的词ID映射为连续向量。

本质上,Embedding层等价于一个输入为one-hot的全连接层

设词汇表大小为NNN,嵌入维度为dd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值