扣子空间到底在搞啥?

2024 年底,字节跳动悄悄上线了一个叫“扣子空间”的 AI Agent 系统。最开始,这玩意默默藏在飞书里干活,没几个人注意。

直到后来,它像个靠谱的打工人一样,在“用完即走”的节奏里,悄悄刷起了存在感。

简单点说,就是字节搞了个 AI 小助理,最初当后台劳模,后来逐渐走上前台,慢慢被人发现:“哎,这家伙还挺能干。”

这事和 OpenAI 搞 Memory + Autonomy 的转型不一样,也和 Cognition 弄 Devin 那种“AI 程序员”不太一样。字节这一套,更像在建一个系统完备、分工明确的 AI 工厂。

别人是搞“大脑”,它是搞“车间”;别人是做一个超级 Agent,字节是组织一群 AI 小能手,流程化协作干活。

下面我们就来扒一扒这个低调但有料的“扣子空间”,它到底在干啥,系统怎么搭的,值不值得学一学。

01

什么是“扣子空间”?

它不是一个 Agent,而是一套运行多个 Agent 的系统。

具体点讲,就是字节在飞书里塞了个 AI 平台,用户提个需求,它就能自动调配后端多个 AI Agent 协作处理,最后把结果打包给你。

你不需要知道背后发生了什么,整个过程类似于你发出一条指令,系统内部就像工厂流水线一样运转起来。

核心理念很简单:

•一条指令进来

•多个 Agent 自动上阵

•系统调度任务、分工协作

•把结果统一打包反馈

这不是一个聊天机器人,也不是一个工具集,而是一个智能的“任务执行平台”。

02

它怎么实现的?

从系统结构上看,扣子空间大致分成三层:

1. Agent 层:技能工人

每个 Agent 相当于一个技能熟练的小工具,比如:

•会议纪要 Agent

•数据分析 Agent

•文档总结 Agent

它们有各自能力、接口、状态,能独立干特定的活儿。

就像你有一支 AI 员工队伍,谁擅长什么,系统心里有数。

2. 调度层:智能工头

调度层是整个系统的“大脑”。它干的事主要包括:

•拆任务:把一个复杂任务分解成多个子任务

•分派活:挑选最合适的 Agent 去执行

•保上下文:让所有 Agent 在协同中保持一致理解

它不像传统那种“一个接一个”的调用逻辑,而是有计划、有反馈、动态调度的控制中心。

这玩意就是一个 AI 工头,你说句话,它立马开始安排人手干活。

3. 体验层:用户前台

这就是你能看到的部分,比如飞书上的交互界面。

它的特色在于,不是简单对话框,而是“协作式操作台”:

•展示任务处理流程

•支持中途打断/调整

•能和飞书文档、表格、流程图等工具打通

你看到的可能只是“任务已完成”,背后其实是一整套 AI 流程链条在运转。

03

和 OpenAI、Cognition 有啥不同?

当前行业 Agent 大概有三类思路:

OpenAI 模型派:搞个超大模型 + 工具调用,一切靠 GPT 智商

Cognition 协同派:AI 做助理,主要还是人类主导写代码

字节系统派:多个小 Agent 分工协作,自动完成任务

字节这一套,更像是“工程师思维”做系统,不追求一个 Agent 打天下,而是重在组织结构、协作流程。

优点是更适合复杂业务、流程自动化;缺点则是系统复杂度高、资源消耗大。

但换个角度说:如果你要搞生产力工具,要真正落地做事,字节这种方式可能更实在。

04

用起来咋样?

目前来看,扣子空间主要用于飞书的办公场景,比如:

•自动生成会议纪要

•日报内容整理

•项目任务规划

•绘制流程图

比如你一句话:“我想做个新项目,帮我规划一下”,它就会:

•拆解任务(子任务:分析需求、划分阶段、制定进度)

•调用不同 Agent 分别完成子任务

•汇总结果,打包反馈给你

整个过程中,你不需要不断“对话”,更像是在远程控制一个 AI 团队。

你扔一个目标,系统自动拆解、执行、反馈。

从“AI 助手”到“AI 团队”的跃迁已经发生了。

05

为什么值得关注?

扣子空间的思路不是去做“更聪明”的 AI,而是让 AI 真正“干活”、融入流程、替人执行。

它背后的逻辑是:

•模型不是终点,任务完成才是核心

•聪明不等于好用,好用 = 能被调度、能协作、能落地

过去一年,大家都在卷大模型、拼推理速度,但“谁能把 AI 真正部署在任务流里”成了新的竞争力。

AI 不是秀智商,而是比谁更能上岗。

这一点上,字节的“扣子空间”确实是走得比较远的那一波。


出书了!DeepSeek超简单入门!扫码下单, 还可以附赠15篇飞书电子版本阅读福利。

图片

购书的还可以获赠训练营文档。

图片

公众号后台回复:陪伴群,可以直接链接军哥,做AI启航

福利:+ jianghu10002领取IP起盘手册

图片

### 扣子空间的定义及相关概念 在数学和物理学领域,“扣子空间”的具体定义并未被明确提及于常见的学术文献中。然而,基于用户提到的空间概念与物理、数学的关系,可以推测“扣子空间”可能涉及几何结构、拓扑性质或者动力学系统的抽象描述。 #### 1. 几何与拓扑视角下的空间 从几何和拓扑的角度来看,空间通常指的是满足特定条件的对象集合及其关系。例如,欧几里得空间 \( \mathbb{R}^n \) 是一个典型的线性空间,用于描述平面上或更高维度中的点集[^4]。如果将“扣子”视为一种特殊的对象,则“扣子空间”可以理解为一组具有某些属性的扣子组成的集合,并赋予一定的几何或拓扑结构。 假设每颗扣子的位置可以用坐标表示,则所有扣子组成的空间可以是一个离散点集,其上的距离度量决定了空间的具体性质。例如,闵可夫斯基时空中的事件可以通过四维向量来描述,类似的思路也可以应用于构建“扣子空间”。 #### 2. 动力学系统中的状态空间解释 在经典力学中,状态空间是用来描述系统动态行为的重要工具之一。对于给定的动力学系统,其状态空间由所有可能的状态矢量构成,每个状态矢量代表系统某一时刻的整体配置。假如我们将一颗扣子的动作(如解开、系紧)建模成一系列离散事件,则这些事件的时间演化轨迹便构成了该扣子对应的状态空间[^1]。进一步地,多个相互作用的扣子形成复合系统时,整体状态空间将是单个扣子状态空间的笛卡尔积。 #### 3. 抽象代数框架内的探讨 另一种可能性是从群论或其他抽象代数理论出发研究所谓的“扣子变换”。考虑某个操作集合 {解锁, 锁住}, 它们分别对应着改变当前扣子状态的操作符。当把这些基本运算推广到全体扣子上并引入适当组合规则之后,就可以得到关于整个体系的一个封闭代数结构——即所谓“扣子群”或“扣子环”,从而间接定义出相应的“扣子空间”。 ```python class ButtonSpace: def __init__(self, buttons): self.buttons = buttons def toggle(self, index): """Toggle the state of a button at given position.""" if 0 <= index < len(self.buttons): self.buttons[index] ^= True # XOR toggles between False and True states. def get_state_vector(self): return tuple(self.buttons) # Example usage demonstrating simple 'button space' manipulation. bs = ButtonSpace([False]*5) # Initialize five unfastened buttons. print(bs.get_state_vector()) # Output initial condition (all off). for i in range(3): # Perform three arbitrary actions on different indices. bs.toggle(i % len(bs.buttons)) print(bs.get_state_vector()) # Show resulting configuration after operations applied sequentially. ``` 以上代码片段展示了一个简化版本的按钮空间实现方式,其中`ButtonSpace`类封装了一组布尔值列表用来模拟各个独立部件的工作状况;通过调用成员函数`toggle()`即可更改指定索引处元件的状态。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值