基于tensorflow2 的WGAN实现以及模型结构、损失函数的个人理解总结

本文介绍了如何在TensorFlow2环境下搭建和训练Wasserstein GAN(WGAN)。内容包括环境配置、模型结构分析、训练过程及可视化,探讨了WGAN的训练技巧和权重限制对模型稳定性的影响,并提到了WGAN-GP的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



1. 环境安装

1.1 环境搭建

创建一个tensorflow2的新环境,这样一是方便安装避免与之前安装的包冲突,二是可以方便管理代码,避免以后各种包之间依赖关系错误,无法安装。

conda create -n tensorflow2 -python=3.7.0

1.2 GPU是否可用检测

激活环境,输入pip命令安装tensorflow2

pip install tensorflow==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

检测一下,GPU版本是否可用

import tensorflow as tf
tf.test.is_gpu_available
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nature子刊寺-住持

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值