
深度学习
文章平均质量分 68
M.François
Learning code by doing more projects as many as you can.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
我的新书《深度学习训练营 - 21天实战》出版了!!!
我把自己想象是一个软件、一段代码,今天的版本一定要比昨天好,明天的版本肯定会比今天好!— By 陆奇《深度学习训练营 - 21天实战》终于在疫情即将结束时出版了!非常感谢主编们以及出版社的相关负责人的辛勤付出!????衷心的感谢沈老师、郭教授、领导们、同事们、家人和朋友的支持与点评!????????在人工智能领域,很多时候,我们都是站在巨人的肩膀上做创新、搞发展、实现落地应用。深度学习领域最难啃的花书《深度学...原创 2020-04-12 15:19:29 · 1336 阅读 · 6 评论 -
神经网络 从ReLU到Sinc,26种激活函数可视化
转自:https://mp.weixin.qq.com/s/7DgiXCNBS5vb07WIKTFYRQ在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为。正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分的)。此外,复杂的激活函数也许产生一些梯度消失或爆炸的问题。因此,神经网络倾向于部署若干个特...转载 2018-07-03 23:04:16 · 1578 阅读 · 0 评论 -
Google Cloud Engine使用精简教程
Google Cloud Engine使用精简教程GOOGLE CLOUD ENGINE注册账号后,会赠送300美金的使用劵,所以建议大家,用完后,一定要关闭实例,否则当你不用时,它也会收费。1.首先,注册一个google account2.进入控制台,https://console.cloud.google.com/3.在左侧菜单中,选择VM实例4.点击顶部【...原创 2018-07-07 18:45:22 · 4365 阅读 · 0 评论 -
TensorFlow查看GPU信息
查看是否有GPUimport tensorflow as tfgpu_device_name = tf.test.gpu_device_name()print(gpu_device_name)输出/device:GPU:0GPU是否可用# 返回True或者Falsetf.test.is_gpu_available()from tensorflow.python.clien...原创 2018-11-07 19:26:57 · 53108 阅读 · 2 评论 -
AutoML
1.Azure 自动机器学习(预览版)是否开源: 否是否基于云: 是(仅测试,训练可在任何机器上进行)支持任务: 分类,回归所用技术: 概率矩阵分解 + 贝叶斯优化训练框架: sklearn2.谷歌 AutoML是否开源: 否是否基于云: 是(训练和测试均基于云)支持任务: 用于分类的 CNN,RNN,LSTM所用技术: 基于策略梯度更新的强化学习训练框架: TensorFl...转载 2018-11-24 14:38:05 · 255 阅读 · 0 评论 -
程序员创业:从有想法 -> 公司注册 -> 项目路演 -> 一对一投资人商谈
写这篇博客的目的就是想记录下博主从有想法idea到项目落地的一个流程。作为一名资深的程序员,开办公司的这些压根不懂,以下是本人的浅谈,只希望为创业的路上朋友们少走弯路,多点时间干项目!!!1.有想法2.项目的Demo实现3.公司注册4.项目路演5.与投资人商谈一、有想法之前一直在做研发工作,曾任职美联国际英语集团、奇虎360、知乎等企业。从2013年开始人工智能的到来催生了非常多的...原创 2018-12-20 16:48:54 · 1949 阅读 · 2 评论 -
使用Keras的预训练模型做图像分类的详细代码
来自:https://telabytes.com/article/preview?id=21所有这些架构都与所有后端兼容(TensorFlow,Theano和CNTK),并且在实例化时,模型将根据Keras配置文件〜/ .keras / keras.json中设置的图像数据格式构建。例如,如果您设置了image_data_format = channels_last,则将根据TensorFlo...转载 2019-03-06 11:14:28 · 3053 阅读 · 0 评论 -
几行代码就能识别狗狗,你还在等什么?
来自特拉字节AI文章:https://telabytes.com/article/preview?id=20from keras.preprocessing import imagedef plot_bar(predictions): types = [pred[1] for pred in predictions] probs = [pred[2] for pred in...转载 2019-03-06 11:18:41 · 1109 阅读 · 0 评论 -
神经机器翻译 Sequence2Sequence 教程
原文链接:https://telabytes.com/article/preview?id=6作者: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github)本教程的这个版本需要TensorFlow Nightly。要使用稳定的TensorFlow版本,请考虑其他分支,如tf-1.4。介绍序列到序列(S...转载 2019-03-27 16:25:01 · 1065 阅读 · 0 评论 -
深度学习在计算机视觉中的应用
计算机视觉领域正在从统计方法转向深度学习神经网络方法。计算机视觉中仍有许多具有挑战性的问题需要解决。然而,深度学习方法正在针对某些特定问题取得最新成果。在最基本的问题上,最有趣的不仅仅是深度学习模型的表现;事实上,单个模型可以从图像中学习意义并执行视觉任务,从而无需使用专门的手工制作方法。在这篇文章中,您将发现九个有趣的计算机视觉任务,其中深度学习方法取得了一些进展。让我们开始吧。原文来...原创 2019-04-16 13:01:27 · 4160 阅读 · 0 评论 -
2 万字全面测评深度学习框架 PaddlePaddle、TensorFlow 和 Keras | 程序员硬核评测
大家好,我是张强AI,今天要给大家分享一个人工智能之深度学习领域的MNIST手写数字识别入门级教程,等等?这跟那些网上一搜一大把的MNIST入门级教程有什么区别吗?我想说的是,还真有很大的区别!!!划重点来了。。首先这是一个针对初学者入门级的训练MNIST模型教程,因为一般我们在网上搜索的教程都是零散的,没有比较整套的代码和说明教程我们本篇就将MNIST教程的简单及完整的代码用百度的P...原创 2019-05-11 09:54:22 · 4039 阅读 · 0 评论 -
怎样构建深度学习模型?六步走,时刻小心过拟合 | 入门指南
想要训练个深度神经网络,也准备好了可以直接用的数据,要从哪里开始上手?来自美国的Harry Khanna,精心编织了一套六步法。大家可以瞻仰一下,然后决定要不要行动。整个过程中,过拟合的问题时时刻刻都要注意。1. 选个损失函数选择怎样的损失函数,取决于需要解决怎样的问题。如果是回归问题,就可以用均方误差 (MSE)损失函数。如果是分类问题,就用交叉熵 (Cross-Entr...转载 2018-07-03 21:02:31 · 767 阅读 · 0 评论 -
Object Detection In Tensorflow - Part 3
Object Detection in Tensorflow in Real-Time DetectionSo in this blog post, I won’t not show a effect picture or video, because it’s like my first article and second articleI’m going to say, I’m us...原创 2018-07-10 16:51:33 · 264 阅读 · 0 评论 -
深度学习 之三 【TensorFlow 一层神经网络 实战】
import hashlibimport osimport picklefrom urllib.request import urlretrieveimport numpy as npfrom PIL import Imagefrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing ...原创 2018-06-05 12:34:31 · 619 阅读 · 0 评论 -
深度学习 之四 【TensorFlow 两层神经网络】
在上一篇博客中,我们实现了一层神经网络,现在,我们将通过TensorFlow实现两层神经网络;添加一个隐藏层到网络,让它建模更复杂的功能。而且隐藏层上使用非线性激活函数可以模拟非线性函数。使用Relu在隐藏层作为激活函数,形成多层网络,如下图:那么,这个隐藏层激活函数,我们就使用 ReLu ,Relu是非线性激活函数,又称作修正线性单元,Relu对于所有的负的输入,返回0,大于等于0的...原创 2018-06-05 20:10:30 · 2168 阅读 · 1 评论 -
深度学习 之五 【TensorFlow 保存模型】
保存和读取 TensorFlow 模型训练一个模型的时间很长。但是你一旦关闭了 TensorFlow session,你所有训练的权重和偏置项都丢失了。如果你计划在之后重新使用这个模型,你需要重新训练!幸运的是,TensorFlow 可以让你通过一个叫 tf.train.Saver 的类把你的进程保存下来。这个类可以把任何 tf.Variable 存到你的文件系统。保存模型的代码...原创 2018-06-05 20:47:38 · 797 阅读 · 0 评论 -
深度学习 之六 一些知识概念
1.激活函数 Activation Function1.1 Step Function 阶跃函数1.2 Sigmoid S型函数1.3 ReLU1.4 tanh2.防止过拟合 Preventing Overffiting2.1 Early Stopping 早期停止2.3 Dropout 丢弃单元来自论文 “Dropout: A Simple Way to Pr...原创 2018-06-05 21:24:13 · 274 阅读 · 0 评论 -
深度学习 之七 【卷积神经网络 CNN】
1.CNN的应用了解 WaveNet 模型。如果你能训练人工智能机器人唱歌,干嘛还训练它聊天?在 2017 年 4 月,研究人员使用 WaveNet 模型的变体生成了歌曲。原始论文和演示可以在 此处 找到。了解 文本分类 CNN。你或许想注册作者的 深度学习简讯 !了解 Facebook 的 创新 CNN 方法(Facebook) ,该方法专门用于解决语言翻译任务,准确率达到了前...原创 2018-06-05 21:58:06 · 1619 阅读 · 0 评论 -
深度学习 之二 【机器学习介绍】
人从过去经验中学习; 机器从过往数据中学习。回归模型是一个预测值的模型分类返回的是状态1.机器学习领域的一些最重要的分类算法,包括以下算法:逻辑回归 Logistic Regressionfrom sklearn.linear_model import LogisticRegressionclassifier = LogisticRegression()神经...原创 2018-06-01 22:30:56 · 698 阅读 · 0 评论 -
深度学习 之八 【循环神经网络 RNN】
1.循环神经网络 Recurrent Neural Network循环神经网络,一般用在 语音识别,例如:Google Assistant, Apple Siri, Amazon Alexa 股票涨跌,随着时间的变化股票的涨跌 自然语言处理(NLP), 机器翻译, 手势识别这么多有趣的应用,我们来一探究竟!你喜欢玩游戏和机器人吗?查看 Open AI 制造的 DotA 2机...原创 2018-06-10 20:21:04 · 962 阅读 · 0 评论 -
Object Detection In Tensorflow - Part 1
Object Detection By Tensorflow先看效果图以上是我亲自实践的结果。其实很简单,具体代码,我就不在本篇博客上说了Object Detection 官方文档Object Detection入门指导代码需要注意的是,安装环境,你需要安装如下protoc = 3.4.0 (这个不要安装最新版的)tensorflowPILmatp...原创 2018-07-09 17:42:56 · 247 阅读 · 0 评论 -
tensorflow.python.framework.errors_impl.InternalError: Failed to create session.
今天在AWS上运行我的神经网络代码,然后直接在Conv2D的方法出报错了,然后google了下,在stackoverflow上有人说:直接在命令行键入:export CUDA_VISIBLE_DEVICES=''然后重新运行代码, 就好了。他们猜测,可能是GPU内容不够了。...原创 2018-07-03 14:53:50 · 7820 阅读 · 3 评论 -
Object Detection In Tensorflow - Part 2
Object Detection In Tensorflow for video detectionThis blog post is based on this article , so the environment, installation, fundament usage will not be explained here.Let’s first looking at a ef...原创 2018-07-10 16:11:05 · 274 阅读 · 0 评论 -
深度学习 之一 【神经网络介绍】
一般公式一般的二维线性分类预测公式: y hat = W * x + b一般的三维线性分类预测公式: y hat = W1 * x1 + W2 * x2 + W3 * x3 + b如果是n维线性分类预测公式: y hat = W1 * x1 + W2 * x2 + ... + Wn * xn + b1.为什么感知器被称作为“神经网络“?因为感知器结构和大脑神经元的结构很相...原创 2018-05-21 17:48:53 · 2473 阅读 · 1 评论