- 博客(445)
- 资源 (3)
- 收藏
- 关注

原创 PR出书启动
另外,写模式识别最闹心的是变量,很多新的东西,而且这是多门数学的杂交品种,变量特别麻烦。各种各样的变量,有的时候不是分不清,但是如果标清楚的话又特别繁琐,又不舒服。况且还有分不清、标不清的时候。模式识别也离不开他。需要精通统计学的人可以共同探讨。所以,目前我还没有到过河拆桥、卸磨杀驴的时候,作者的事情需要廖老师认可,这是尊重我的导师。但是我这个阶段我仍会思考可以合作、值得合作的人,等廖老师退休,我就重新组队。
2025-06-23 22:33:19
1563

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第三次印刷
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》至于巴特沃斯滤波器,就算讲模拟滤波器,错误也太多,幅频响应少个根号,频率变换也是错的,从低通到高通再到带通、带阻,截止频率处的增益哪哪哪都不一样。就行了),那是因为他全尺寸采样滤波器(太荒谬,参数极不可控),那空域滤波器的尺寸与图像尺寸相同,那这样的卷积,边界问题不得不解决。十五年的沉淀和积累,这一版目前没有发现肉眼可见的错误(纠错送书),绝对值得拥有。冈萨雷斯在滤波器部分是大错。
2025-05-26 21:42:36
1240

原创 《数字图像处理》寻找合作者
现寻找能够一起讨论、切磋、打磨这一部分内容的合作者。首先要求熟悉Lim这本书第4章和第5章的内容。但这本书过于专业化,我的目标是没有信号处理那么专业,同时又不失科学性(冈萨雷斯纯属瞎说)。Rafael Gonzalez和Richard Woods所著的《数字图像处理》关于滤波器的部分几乎全错,完全从零开始写,困难重重。关于他的问题已经描述在。其他的要求:第一,教学十年以上,第二,有自己独特的见解,不迷信权威,第三,能分担基本的事务性工作。对于胜任此工作者,本书再版的时候给予三作。
2025-03-31 14:04:12
2352

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》重印变更的彩插
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第一次重印变更的彩插
2025-01-20 22:54:33
1526

原创 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》
本书对该章重新梳理,从全局特征和局部特征的角度描述特征提取方法,删除了不常用的链码等二值目标描述子,以及直方图矩分析法、频谱分析法等纹理描述子,增加了经典的Harris、HoG等局部特征和描述方法,以及Gabor滤波器组的纹理描述方法等。关于脉冲噪声的统计模型,Gonzalez的前两版中以噪声的概率分布描述,脉冲噪声分布律的概率之和不等于1,后两版以图像的概率分布描述,随机变量取其他值是指任何一个可能值,而不是指其他任何可能值之和,且像素值也有极小值和极大值的可能,不是只有脉冲噪声是极大值或极小值。
2024-03-21 11:50:14
3115
1

原创 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码
我们给选用教材的教师提供PPT版本的课件以及习题解答,并给予持续的教学支持。关于书中的问题,答读者问。
2024-03-21 07:30:52
514
2
原创 概率&概率密度——直方图
频数、概率、概率密度这三个值成正比关系。不同的是,看频数、概率时,在乎的是直方图矩形高度;而看概率密度时,关注的是矩形面积。直方图的纵轴为概率时,直方图也叫归一化直方图。这是因为所有区间概率。但是,概率密度本身也反映数据分布的疏密情况。得到的是概率密度 (probability density)的取值范围 [0, 1]。概率值代表“可能性”。
2025-06-29 08:33:18
883
原创 Duda《模式分类》
这本书是最早的一本模式识别,还是国外引入,后面的模式识别都是参考的这本书。作者的数学功底很好,但是文笔不好,逻辑不清晰,表达也不清晰,再加上这门课很难,所以这本书并没有流传开。现在炒冷饭,这本书又出了精装本。Richard O. Duda、Peter E. Hart和David G. Stork《模式分类》(Pattern Classification),第二版。虽然比较老了,一部分内容过时了,也没有新的内容(我想作者应该是年龄大了,否则就再版了),但是在机器学习与模式识别领域仍然具有很高的参考价值。
2025-06-28 09:42:40
221
原创 概率&概率密度
换句话说,连续随机变量在单个点上没有概率质量(英文是mass,但是在中文教材中上没有直译mass,称为概率函数,凡是将mass译为质量,就是不说人话,一看就是没有系统学过概率论与统计学),其概率是通过在某个区间上对概率密度函数积分来计算的。连续型随机变量与离散型随机变量的本质区别在于,在离散情况下,单个点的概率可以非零;而在连续情况下,由于取值的无限性,单点的概率为零,概率密度函数描述了概率在区间上的分布情况。这表明,连续随机变量的概率分布由概率密度函数在区间上的积分决定,而非单点处的函数值。
2025-06-28 09:33:02
370
原创 EM求解的高斯混合模型GMM算法——退化(十一)
M步:重新估计模型参数μk(t+1)=∑i=1nγk(t)(xi)xi∑i=1nγk(t)(xi) {\bm {\bm \mu}}_k^{(t+1)} = \frac{\sum\limits_{i=1}^n \gamma_k^{(t)}({\bm x}_i) {\bm x}_i}{\sum\limits_{i=1}^n \gamma_k^{(t)}({\bm x}_i)}μk(t+1)=i=1∑nγk(t)(xi)i=1∑nγk(t)(xi)xiΣk(t+1)=∑i=1nγk(t
2025-06-27 14:51:23
751
原创 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。因此,看到在这个极限下,完整数据对数似然函数的最大化期望等价于最小化K均值算法的误差度量J,J由式(34)给出。注意,K均值算法不估计聚类的协方差,只估计聚类的均值。的重估方程由式(16)给出,并简化为K均值算法的结果[式(4)]。因此,在这个极限下,获得了数据点到聚类的硬分配,就像在K均值算法中一样,所以。的值重置为分配给聚类k的数据点的比例,这些参数在算法中已不再起作用。
2025-06-27 10:23:52
556
原创 混合密度模型GMM的似然函数(二)
最大参数的解析表达式是未知的,并且最大化必须以数值形式进行。理由是式 (11) 中的内求和的存在,无法直接对高斯密度求对数。) 的情况下,这种最大化可以以闭合形式实现,从而得到常用的样本均值和样本协方差矩阵估计量(,以表示所说的关于随机变量 X 的某个特定的密度函数。这种更详细的标记使得。由于这种内在的模糊性很少在实际中出现,采用了简单的标记法。在下一节中,将介绍一个著名的数值方法——且没有混合系数可估计)。清楚地代表着两种不同的函数,而当写成。严格来讲,概率密度函数。来解决最大似然问题。
2025-06-24 12:26:11
808
原创 [系列]高斯混合模型GMM十三篇
高斯混合模型GMM在大多数的书中只是给了结论,这里有个特有用的工具——隐变量模型的极大似然估计。首先要理解极大似然估计,而EM算法是一种典型的隐变量模型的极大似然估计。在极大似然估计的基础,这里给出了高斯混合模型GMM十二篇。要从本质上理解算法,而不是只知道一步一步怎么做,第一,你记不住,谁能记住繁琐的步骤?!第二,不会产生创新思维。
2025-06-24 12:21:38
211
原创 EM求解的高斯混合模型——Q函数的极大似然估计(九)
均值μi\mu_iμi:通过样本加权平均来估计。协方差矩阵Σi\Sigma_iΣi:通过样本加权中心矩来估计。混合系数πi\pi_iπi:通过样本属于该成分的平均后验概率来确定。
2025-06-22 11:34:45
433
原创 高斯混合模型GMM——混合密度模型的特例(三)
还可以使用这个合成的数据集来说明“责任”,即评估每个数据点关于生成此数据集的高斯混合分布中每个分量的后验概率。在概率图模型和生成模型中,ancestral sampling 是一种按照变量生成顺序(即祖先到后代)依次采样的方法,确保样本符合联合概率分布。在图(a) 中,将数据点标记成什么颜色依据的是它们实际所属的分量。将高斯混合分布描述为高斯分量的简单线性叠加,可以提供比单个高斯分布更丰富的密度模型类别。的值(即生成这些点的高斯分量)对点进行着色来描绘联合分布。中的样本,如图(a) 所示。
2025-06-22 08:17:20
774
原创 感知器算法例题
可见,感知器算法由于采用不同的初值或选取不同的错分类点,解可以不同。得到的分离超平面和感知机模型。如果在计算中错分类点依次取。,使用感知器算法的随机梯度法求感知机模型。,没有错分类点,损失函数达到极小。如图所示的训练数据集,其正样本是。这是在计算中错分类点先后取。,那么得到的分离超平面是。,未能被正确分类,更新。,被正确分类,不修改。
2025-06-19 14:09:55
654
原创 K均值聚类例题
由于得到的新的类没有改变,聚类停止。均值聚类算法将样本聚到两个类中。(4) 重复步骤 (2) 和步骤 (3)。给定5个样本的样本矩阵。(1) 类中心的初值。
2025-06-18 16:59:01
797
原创 支持向量机(SVM)例题
试求最大间隔分离超平面。(提示:写出Lagrange函数及其KKT条件,并观察哪个样本不是支持向量)可写成线性方程组,然后就是解方程组的问题。已知一个训练数据集,其正样本是。于是最大间隔分离超平面为。求得此最优化问题的解。
2025-06-18 16:31:14
823
原创 EM求解的混合密度模型——Q函数(八)
先导:①②式 (16) 给出不完全对数似然函数Lθ;XlnpX∣θi1∑nlnk1∑KπkNxi∣μkΣk16如前所述,由于似然函数存在求和,而非乘积,不能直接对高斯密度求对数,这使得Lθ;X的最大化变得复杂,难以求解。如何利用 EM 方法对高斯混合模型的参数进行估计?引入代表每一个样本所属聚类的隐变量z。设θπkμkΣkk1K为参数向量,Xx1⋯xn。
2025-06-17 18:55:36
282
原创 MATLAB提供的预训练神经网络
CNN。Deep Learning Toolbox™ provides various pretrained networks that have different sizes, speeds, and accuracies.
2025-06-17 09:37:11
171
原创 期望最大化(EM)算法的推导——Q函数(七)
EM 算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法。注意到这一极大化的主要困难是式 (12) 中有未观测数据并有包含和(或积分)的对数。对于一个含有隐变量的概率模型,极大化观测数据(不完全数据)的极大化而言是常数的项,由式 (16)及式 (13),有。由式 (16) 和式 (17),EM 算法找到下一个点。式 (17) 等价于 EM 算法的一次迭代,即求。事实上,EM 算法通过迭代逐步近似极大化。的一个下界,而且由式 (13) 可知,的对数似然函数,即极大化。的增加,保证对数似然函数。
2025-06-16 06:59:39
537
原创 PR书稿封面设计
由于模式识别过于深奥,也不知道当初这个名称谁起的,英文本身就不知所云,中文翻译更不知所云。到现在pattern一词的定义都有争议,没有统一的定义。机器学习,如同计算机视觉(最初叫机器视觉,很难听,后来改成了计算机视觉),更容易被广大接受,尤其是外行和半路出家的。今年很勉强做了一个很简易的课件,这样难度的课没有一本能讲清楚的教材真是费劲。找不到这样的教材,所以只能自己写了。但是我也并不认可统计学习部分也叫机器学习,也不认可模式识别是机器学习的子集。但是AI生成没有版权,这三类动物又不可能同框,是个问题。
2025-06-16 06:54:55
1894
原创 离散隐藏变量下期望最大化(EM)算法的简化(五)
期望-最大化(EM 算法)是在有“隐藏”变量的模型中实现最大似然估计。EM 算法是一种迭代算法,它保证收敛到似然函数的局部最大值。的当前值计算式 (13)(称为“E 步”)和最大化式 (14) 这两个步骤之间迭代,以得到下一个估计。一起称为完全数据(complete-data),观测数据。的条件分布的期望值。是离散的(这是 GMM 中的情况)。是需要估计的模型参数,那么不完全数据。,那么完全数据的对数似然函数是。的局部最大值,在这种情况下,是 EM 算法的核心,称为。完全数据的对数似然函数。
2025-06-15 09:26:00
694
原创 MNIST数据集上构建简单的卷积神经网络、训练并分类(MATLAB例)
将 70% 的图像用于训练,15% 的图像用于验证,15% 的图像用于测试。指定 “randomized” 以将每个类中指定比例的文件分配给新数据集。splitEachLabel 函数将图像数据存储拆分为三个新数据存储。数据集有 10 个类,数据集中每个图像的像素数为 28×28×1。此示例说明如何使用深度网络设计器创建简单的卷积神经网络来进行深度学习分类。使用 minibatchpredict 函数进行预测,并使用 scores2label 函数将分数转换为标签。准确度是指正确预测的百分比。
2025-06-15 09:22:41
219
原创 预训练CNN网络的迁移学习(MATLAB例)
要对新图像进行分类,请使用 minibatchpredict。要将预测分类分数转换为标签,请使用scores2label 函数。有关如何使用预训练神经网络进行分类的示例,请参阅使用 GoogLeNet 对图像进行分类。从基于大型数据集训练的神经网络中提取层,并基于新数据集进行微调。本例使用ImageNet中的子集进行微调。原因是这些样本都比较复杂,前景不突出,或者背景复杂,造成特征不明确。没有划分数据集,因为这个例子本身的目的是为了观察CNN的特征变换。的层级分类体系,每个类别有唯一的 ID。
2025-06-12 13:00:05
1046
原创 王贝伦《机器学习》
第二,需要更加认真,例如,这样的小错。我觉得这是数学的敏锐性,如果是向量,肯定是范数。数学公式规范,能看出功底。绝对好过南京大学的书。第一,需要有高人指点,提高站位。
2025-06-12 11:56:12
216
原创 姜伟生《统计至简》
这学期后半学期有两周一周三次课,我实在没有时间做课件了,甚至连备课的时间都没有了,看到这本书有相关内容,就直接用了。结果上课要啥找不到啥,艰难地上完了课,这处境终身难忘。这套书图真漂亮,字间距也大,特别合适直接作为课件。但是理论上弱,有的地方算法也get不点上。适合初学者,因为能看图说话;又不适合初学者,因为没有解析、没有分析。
2025-06-11 21:32:09
182
原创 杉山将(Sugiyama Masa)《图解机器学习》
这本书如果没有那些傻了吧唧的漫画,总体还是不错的。作者有一定的站位,但是有一种茶壶里煮饺子的感觉。日本东京大学教授,机器学习领域知名学者,专注于统计机器学习、密度比估计等研究方向。[日] 杉山将(Sugiyama Masa)(原版日文名:図解でわかる機械学習)
2025-06-11 21:19:59
313
原创 MNIST数据集上朴素贝叶斯分类器(MATLAB例)
使用pca作为降维,pca是一种非监督的线性降维方法。方差贡献率作为参数。MNIST数据集上朴素贝叶斯分类器。10000个样本的样本集。
2025-06-10 22:56:15
826
原创 克里斯托弗·M. 毕晓普(Christopher M. Bishop)《深度学习基础与概念》
深度学习基础与概念》(Deep Learning Foundations and Concepts),英国作者克里斯托弗·M. 毕晓普(Christopher M. Bishop)和休·毕晓普(Hugh Bishop)。有的书图画的很漂亮,但是理论上弱;有的书一堆公式,云里雾里,抽象难以理解;有的书文字功底很差,不说人话;有的书西一榔头东一棒,完全没有逻辑;有的书有文字表达能力,数学功底很差,错误百出;有的书啰里八嗦,简直浪费我的时间(主要是译作)。这本书在综上水平上算高的,又兼顾前沿。
2025-06-10 07:35:13
272
原创 卷积核、FIR滤波器与LTI系统——一回事
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》$\S 3$卷积核和$\S 4$FIR滤波器之间的桥梁是卷积定理,时域卷积对应频域滤波。频域滤波器设计是利用频域设计滤波器,而不是说在频域滤波。FIR滤波器是在空域滤波器上定义的。
2025-06-09 17:57:26
1848
原创 詹森不等式(Jensen’s Inequality)——EM算法的基础(六)
设函数fff是定义在区间III上的凸函数(convex function),且随机变量XXX的取值落在IIIEfX⩾fEXEfX)]⩾fEX])若fffEfX⩽fEXEfX)]⩽fEX])函数类型詹森不等式凸函数EfX⩾fEXEfX)]⩾fEX])凹函数EfX⩽fEXEfX)]⩽fEX])
2025-06-09 08:54:25
1036
原创 李航《机器学习方法》
国内机器学习的书籍我只服李航,数学功底扎实。但是不适合初学者和半路出家的。那些图解和实战的书籍销量好,只能说明半路出家机器学习的人太多。这本书叫机器学习就好,没有必要叫机器学习方法。
2025-06-08 10:25:24
137
原创 混合密度模型(一)
K-Means 算法对数据的分布不做任何假设。另一种基于模型的聚类方法是对分布假设一个特定的参数形状并从数据中估计参数。对聚类的适当假设是概率密度的混合。使用期望-最大化算法来获取参数的最大似然估计。p(x)=∑i=1kπi⋅p(x∣μi,Σi),(1)p(x) = \sum_{i=1}^{k} \pi_i \cdot p(x \mid \mu_i, \Sigma_i), \tag{1}p(x)=i=1∑kπi⋅p(x∣μi,Σi),(1)高斯混合模型(Gaussian Mixture Model,
2025-06-05 07:58:50
387
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人