题目2 : 回文字符序列(区间DP)

本文介绍了一种使用动态规划解决回文子序列计数问题的方法,并提供了完整的C++实现代码。通过构建二维DP数组来记录字符串各部分的回文子序列数量,最终输出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间限制:2000ms
单点时限:1000ms
内存限制:256MB

描述

给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。

输入

第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。

输出

对于每组数据输出一行,格式为"Case #X: Y",X代表数据编号(从1开始),Y为答案。答案对100007取模。

数据范围

1 ≤ T ≤ 30

小数据

字符串长度 ≤ 25

大数据

字符串长度 ≤ 1000

 

样例输入

5
aba
abcbaddabcba
12111112351121
ccccccc
fdadfa

样例输出

Case #1: 5
Case #2: 277
Case #3: 1333
Case #4: 127
Case #5: 17

 

用dp[i][j]表示这一段里有多少个回文串,那首先dp[i][j]=dp[i+1][j]+dp[i][j-1],但是dp[i+1][j]和dp[i][j-1]可能有公共部分,所以要减去dp[i+1][j-1]。

如果str[i]==str[j]的话,还要加上dp[i+1][j-1]+1。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iomanip>
#include <algorithm>
#include <queue>
#define MOD 100007
using namespace std;
int dp[1005][1005];
char str[1005];
int main()
{
    int T,cnt=1;
    cin>>T;
    getchar();
    while(T--)
    {
        gets(str);
        int n=strlen(str);
        int i,j;
        for(i=0;i<n;i++)
            dp[i][i]=1;
        for(i=1;i<n;i++)
        {
            for(j=i-1;j>=0;j--)
            {
                dp[j][i]=(dp[j+1][i]+dp[j][i-1]-dp[j+1][i-1]+MOD)%MOD;
                if(str[i]==str[j])
                    dp[j][i]=(dp[j][i]+dp[j+1][i-1]+1+MOD)%MOD;
            }
        }
        printf("Case #%d: %d\n",cnt++,dp[0][n-1]);
    }
    return 0;
}


<< 为了求解这个问题,我们需要从给定的数字 `x` 中找到最大的回文子序列。这是一个经典的动态规划问题——最长回文子序列(LPS)。我们可以使用以下步骤解决问题: ### 解题思路 1. **提取字符数组**:将输入的数字转换成字符串形式处理。 2. **动态规划构建表**: - 定义二维 DP 表示状态转移关系。 - 设 dp[i][j] 为从索引 i 到 j 的字串的最大回文子序列长度。 - 如果 s[i] == s[j],则 dp[i][j] = dp[i+1][j-1] + 2; - 否则,dp[i][j] = max(dp[i+1][j], dp[i][j-1])。 3. **构造最大回文子序列**:根据 DP 表还原出具体的回文字符串。 4. **移除前导零并输出结果**。 下面是完整的 C++ 实现代码: ```cpp #include <iostream> #include <string> #include <vector> using namespace std; // 功能:找出s中的最长回文子序列 string longestPalindromicSubsequence(const string& s) { int n = s.size(); if (n == 0) return ""; // 构建DP表 vector<vector<int>> dp(n, vector<int>(n, 0)); for (int i = 0; i < n; ++i) dp[i][i] = 1; for (int len = 2; len <= n; ++len) { // 子串长度 for (int i = 0; i + len - 1 < n; ++i) { // 起始位置 int j = i + len - 1; // 结束位置 if (s[i] == s[j]) dp[i][j] = dp[i + 1][j - 1] + 2; else dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); } } // 根据DP表重建答案 int i = 0, j = n - 1; string res = ""; while (i <= j) { if (s[i] == s[j]) { res += s[i]; i++; j--; } else if (dp[i][j] == dp[i + 1][j]) i++; else j--; } string reversedRes(res.rbegin(), res.rend()); string finalResult = res; if (i > j) finalResult += reversedRes.substr(1); else finalResult += reversedRes; // 去掉前导零 size_t start_pos = finalResult.find_first_not_of('0'); if (start_pos != string::npos && start_pos > 0) finalResult.erase(0, start_pos); return finalResult.empty() ? "0" : finalResult; } int main(){ string x; cin >> x; cout << longestPalindromicSubsequence(x) << endl; } ``` --- ### 给出解释 #### 关键点解析 1. **动态规划的状态与转移方程** - 我们用二维表格记录每个子区间 `[i,j]` 内部的最大回文子序列长度。 - 使用递推公式更新这些值,最终得到整个字符串的最大回文子序列长度。 2. **时间复杂度分析** - 计算填满 DP 表的时间复杂度是 O(N^2),其中 N 是字符串长度。 - 还原路径时需要额外花费线性时间 O(N) 来生成实际的回文串内容。 3. **边界条件考虑** - 输入可能全是相同的数值如 '0' 或者空的情况,在程序中有特别处理确保正确返回非空有效结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值