Hadoop3_09

本文详细解读了MapReduce框架中的Shuffle机制,包括默认的HashPartitioner,自定义Partitioner用于按省份分区,以及WritableComparable排序和Combiner合并的应用。通过实例展示了如何实现省份分组排序和流量汇总,以及如何使用GroupingComparator进行辅助排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.3 Shuffle机制

3.3.1 Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。
在这里插入图片描述

Mapreduce确保每个reducer的输入都是按键排序的。系统执行排序的过程(即将map输出作为输入传给reducer)称为shuffle。

在这里插入图片描述

3.3.2 Partition分区

  • (0)问题引出:要求将统计结果按照条件输出到不同文件中(分区)。
    比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

  • (1)默认partition分区

public class HashPartitioner<K, V> extends Partitioner<K, V> {
  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value, int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }
}

默认分区是根据key的hashCode对reduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区。

  • (2)自定义Partitioner步骤
    (1)自定义类继承Partitioner,重写getPartition()方法
    (2)在job驱动中,设置自定义partitioner:
    (3)自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task

3.3.3 Partition分区案例实操

  • 1.需求
    将统计结果按照手机归属地不同省份输出到不同文件中(分区)

(1)输入数据

1    13736230513    192.196.100.1    www.dev1.com    2481    24681    200
2    13846544121    192.196.100.2            264    0    200
3     13956435636    192.196.100.3            132    1512    200
4     13966251146    192.168.100.1            240    0    404
5     18271575951    192.168.100.2    www.dev1.com    1527    2106    200

(2)期望输出数据

手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。

  • 2.需求分析

在这里插入图片描述

  • 3.在案例2.4的基础上,增加一个分区类
package com.dev1.mapreduce.flowsum;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) {

        // 1 获取电话号码的前三位
        String preNum = key.toString().substring(0, 3);
        
        int partition = 4;
        
        // 2 判断是哪个省
        if ("136".equals(preNum)) {
            partition = 0;
        }else if ("137".equals(preNum)) {
            partition = 1;
        }else if ("138".equals(preNum)) {
            partition = 2;
        }else if ("139".equals(preNum)) {
            partition = 3;
        }

        return partition;
    }
}
  • 4.在驱动函数中增加自定义数据分区设置和ReduceTask设置

注意 8,9步骤

package com.dev1.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {

    public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"e:/output1","e:/output2"};

        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowsumDriver.class);

        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 4 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 5 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 8 指定自定义数据分区
        job.setPartitionerClass(ProvincePartitioner.class);

        // 9 同时指定相应数量的reduce task
        job.setNumReduceTasks(5);
        
        // 6 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

  • 分区总结:

如果reduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

如果1<reduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

如果reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000;

例如:假设自定义分区数为5,则

1)job.setNumReduceTasks(1);会正常运行,只不过会产生一个输出文件
(2)job.setNumReduceTasks(2);会报错
(3)job.setNumReduceTasks(6);大于5,程序会正常运行,会产生空文件

3.3.4 WritableComparable排序

  • 1.排序的分类

排序是MapReduce框架中最重要的操作之一。Map Task和Reduce Task均会对数据(按照key)进行排序。该操作属于Hadoop的默认行为
任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
对于Map Task,它会将处理的结果暂时放到一个缓冲区中,当缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次排序,
并将这些有序数据写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行一次合并,以将这些文件合并成一个大的有序文件。

对于Reduce Task,它从每个Map Task上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则放到磁盘上,否则放到内存中。
如果磁盘上文件数目达到一定阈值,则进行一次合并以生成一个更大文件
如果内存中文件大小或者数目超过一定阈值,
则进行一次合并后将数据写到磁盘上。当所有数据拷贝完毕后,Reduce Task统一对内存和磁盘上的所有数据进行一次合并。

(1)部分排序:
MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部排序。
(2)全排序:
如何用Hadoop产生一个全局排序的文件?最简单的方法是使用一个分区。但该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构。

替代方案:首先创建一系列排好序的文件;其次,串联这些文件;最后,生成一个全局排序的文件。主要思路是使用一个分区来描述输出的全局排序。例如:可以为上述文件创建3个分区,在第一分区中,记录的单词首字母a-g,第二分区记录单词首字母h-n, 第三分区记录单词首字母o-z。

(3)辅助排序:(GroupingComparator分组)
Mapreduce框架在记录到达reducer之前按键对记录排序,但键所对应的值并没有被排序。甚至在不同的执行轮次中,这些值的排序也不固定,因为它们来自不同的map任务且这些map任务在不同轮次中完成时间各不相同。一般来说,大多数MapReduce程序会避免让reduce函数依赖于值的排序。但是,有时也需要通过特定的方法对键进行排序和分组等以实现对值的排序。
(4)二次排序:
在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

  • 2.自定义排序WritableComparable
    (1)原理分析
    bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。
@Override
public int compareTo(FlowBean o) {

    int result;
        
    // 按照总流量大小,倒序排列
    if (sumFlow > bean.getSumFlow()) {
        result = -1;
    }else if (sumFlow < bean.getSumFlow()) {
        result = 1;
    }else {
        result = 0;
    }

    return result;
}

3.3.5 WritableComparable排序案例实操(全排序)

  • 1.需求

根据案例2.3产生的结果再次对总流量进行排序。
(1)输入数据
原始数据
phonedata.txt

第一次处理后的数据
part-r-000000
(2)期望输出数据

13509468723    7335    110349    117684
13736230513    2481    24681    27162
13956435636    132        1512    1644
13846544121    264        0        264
。。。 。。。
  • 2.需求分析

在这里插入图片描述

  • 3.代码实现

(1)FlowBean

package com.dev1.mapreduce.sort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }    

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    /**
     * 序列化方法
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    /**
     * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    @Override
    public int compareTo(FlowBean bean) {
        
        int result;
        
        // 按照总流量大小,倒序排列
        if (sumFlow > bean.getSumFlow()) {
            result = -1;
        }else if (sumFlow < bean.getSumFlow()) {
            result = 1;
        }else {
            result = 0;
        }

        return result;
    }
}

(2)编写Mapper类

package com.dev1.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{

    FlowBean bean = new FlowBean();
    Text v = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context)    throws IOException, InterruptedException {

        // 1 获取一行
        String line = value.toString();
        
        // 2 截取
        String[] fields = line.split("\t");
        
        // 3 封装对象
        String phoneNbr = fields[0];
        long upFlow = Long.parseLong(fields[1]);
        long downFlow = Long.parseLong(fields[2]);
        
        bean.set(upFlow, downFlow);
        v.set(phoneNbr);
        
        // 4 输出
        context.write(bean, v);
    }
}

(3)编写Reducer类

package com.dev1.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context)    throws IOException, InterruptedException {
        
        // 循环输出,避免总流量相同情况
        for (Text text : values) {
            context.write(text, key);
        }
    }
}

(4)编写Driver类

package com.dev1.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCountSortDriver {

    public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"e:/output1","e:/output2"};

        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCountSortDriver.class);

        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);

        // 4 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        // 5 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 6 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

3.3.6 WritableComparable排序案例实操(区内排序)

  • 1.需求

要求每个省份手机号输出的文件中按照总流量内部排序。

  • 2.需求需求分析
    基于前一个需求,增加自定义分区类,分区按照省份手机号设置。

在这里插入图片描述

  • 3.案例实操
    (1)增加自定义分区类
package com.dev1.mapreduce.sort;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<FlowBean, Text> {

    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {
        
        // 1 获取手机号码前三位
        String preNum = value.toString().substring(0, 3);
        
        int partition = 4;
        
        // 2 根据手机号归属地设置分区
        if ("136".equals(preNum)) {
            partition = 0;
        }else if ("137".equals(preNum)) {
            partition = 1;
        }else if ("138".equals(preNum)) {
            partition = 2;
        }else if ("139".equals(preNum)) {
            partition = 3;
        }

        return partition;
    }
}

(2)在驱动类中添加分区类

// 加载自定义分区类
job.setPartitionerClass(ProvincePartitioner.class);

// 设置Reducetask个数
job.setNumReduceTasks(5);

3.3.7 Combiner合并

  • (1)combiner是MR程序中Mapper和Reducer之外的一种组件
  • (2)combiner组件的父类就是Reducer
  • (3)combiner和reducer的区别在于运行的位置:
    Combiner是在每一个maptask所在的节点运行
    Reducer是接收全局所有Mapper的输出结果;
  • (4)combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

  • (5)combiner能够应用的前提是不能影响最终的业务逻辑,而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来

Mapper
    3 5 7 ->(3+5+7)/3=5 
    2 6 ->(2+6)/2=4

Reducer
    (3+5+7+2+6)/5=23/5    不等于    (5+4)/2=9/2
  • (6)自定义Combiner实现步骤
    (a)自定义一个Combiner继承Reducer,重写Reduce方法
public class WordcountCombiner extends Reducer<Text, IntWritable, Text,IntWritable>{

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {

        // 1 汇总操作
        int count = 0;
        for(IntWritable v :values){
            count += v.get();
        }

        // 2 写出
        context.write(key, new IntWritable(count));
    }
}

(b)在Job驱动类中设置:

job.setCombinerClass(WordcountCombiner.class);

3.3.8 Combiner合并案例实操

  • 1.需求
    统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。
    (1)数据输入
    hello.txt
    (2)期望输出数据

期望:Combine输入数据多,输出时经过合并,输出数据降低。

  • 2.需求分析

在这里插入图片描述

  • 3.案例实操-方案一

  • (1)增加一个WordcountCombiner类继承Reducer

package com.dev1.mr.combiner;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{

IntWritable v = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        // 1 汇总
        int sum = 0;

        for(IntWritable value :values){
            sum += value.get();
        }

        v.set(sum);

        // 2 写出
        context.write(key, v);
    }
}
  • (2)在WordcountDriver驱动类中指定Combiner
// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordcountCombiner.class);
  • 4.案例实操-方案二
    (1)将WordcountReducer作为Combiner在WordcountDriver驱动类中指定
// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordcountReducer.class);

运行程序,如图
在这里插入图片描述

未使用前
在这里插入图片描述

使用后

3.3.9 GroupingComparator分组(辅助排序)

对Reduce阶段的数据根据某一个或几个字段进行分组。
分组排序步骤:
(1)自定义类继承WritableComparator
(2)重写compare()方法

@Override
public int compare(WritableComparable a, WritableComparable b) {
        // 比较的业务逻辑
        return result;
}

(3)创建一个构造将比较对象的类传给父类

protected OrderGroupingComparator() {
        super(OrderBean.class, true);
}

3.3.10 GroupingComparator分组案例实操

  • 1.需求
    有如下订单数据
    在这里插入图片描述

现在需要求出每一个订单中最贵的商品。
(1)输入数据

0000001    Pdt_01    222.8
0000002    Pdt_05    722.4
0000001    Pdt_02    33.8
0000003    Pdt_06    232.8
0000003    Pdt_02    33.8
0000002    Pdt_03    522.8
0000002    Pdt_04    122.4

(2)期望输出数据

1    222.8
2    722.4
3    232.8
  • 2.需求分析

(1)利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce。
(2)在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品
在这里插入图片描述

  • 3.代码实现
    (1)定义订单信息OrderBean类
package com.dev1.mapreduce.order;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

public class OrderBean implements WritableComparable<OrderBean> {

    private int order_id; // 订单id号
    private double price; // 价格

    public OrderBean() {
        super();
    }

    public OrderBean(int order_id, double price) {
        super();
        this.order_id = order_id;
        this.price = price;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(order_id);
        out.writeDouble(price);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        order_id = in.readInt();
        price = in.readDouble();
    }

    @Override
    public String toString() {
        return order_id + "\t" + price;
    }

    public int getOrder_id() {
        return order_id;
    }

    public void setOrder_id(int order_id) {
        this.order_id = order_id;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    // 二次排序
    @Override
    public int compareTo(OrderBean o) {

        int result;

        if (order_id > o.getOrder_id()) {
            result = 1;
        } else if (order_id < o.getOrder_id()) {
            result = -1;
        } else {
            // 价格倒序排序
            result = price > o.getPrice() ? -1 : 1;
        }

        return result;
    }
}

(2)编写OrderSortMapper类

package com.dev1.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {

    OrderBean k = new OrderBean();
    
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        
        // 1 获取一行
        String line = value.toString();
        
        // 2 截取
        String[] fields = line.split("\t");
        
        // 3 封装对象
        k.setOrder_id(Integer.parseInt(fields[0]));
        k.setPrice(Double.parseDouble(fields[2]));
        
        // 4 写出
        context.write(k, NullWritable.get());
    }
}

(3)编写OrderSortGroupingComparator类

package com.dev1.mapreduce.order;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class OrderGroupingComparator extends WritableComparator {

    protected OrderGroupingComparator() {
        super(OrderBean.class, true);
    }

    @Override
    public int compare(WritableComparable a, WritableComparable b) {

        OrderBean aBean = (OrderBean) a;
        OrderBean bBean = (OrderBean) b;

        int result;
        if (aBean.getOrder_id() > bBean.getOrder_id()) {
            result = 1;
        } else if (aBean.getOrder_id() < bBean.getOrder_id()) {
            result = -1;
        } else {
            result = 0;
        }

        return result;
    }
}

(4)编写OrderSortReducer类

package com.dev1.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;

public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {

    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context)        throws IOException, InterruptedException {
        
        context.write(key, NullWritable.get());
    }
}

(5)编写OrderSortDriver类

package com.dev1.mapreduce.order;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OrderDriver {

    public static void main(String[] args) throws Exception, IOException {

// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args  = new String[]{"e:/input/inputorder" , "e:/output1"};

        // 1 获取配置信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 设置jar包加载路径
        job.setJarByClass(OrderDriver.class);

        // 3 加载map/reduce类
        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);

        // 4 设置map输出数据key和value类型
        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);

        // 5 设置最终输出数据的key和value类型
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        // 6 设置输入数据和输出数据路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 8 设置reduce端的分组
    job.setGroupingComparatorClass(OrderGroupingComparator.class);

        // 7 提交
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}
注意分组比较器,有多个compare方法 需要覆盖重写 public int compare(WritableComparable a, WritableComparable b) 而不是 public int compare(Object a, Object b)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翁老师的教学团队

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值