pytorch源码解读——RNN/LSTM篇

文章的字母中:

b: batch_size
t: time_step
n: num_feature
h: hidden_size

假设输入数据维度input = (b, t, n)
所设计的LSTM模型如下:

class MYLSTM(nn.Module):

    def __init__(self, input_size, hidden_size, out_size):
        super(MYLSTM, self).__init__()
        self.hidden_size = hidden_size
        self.input_size = input_size
        
        self.lstm = nn.LSTM(
            input_size=self.input_size + self.hidden_size,
            hidden_size=self.hidden_size,
            num_layers=1,
            batch_first=True,
        )

        self.out = nn.Linear(self.hidden_size, out_size)

    def forward(self, x):
        hidden, cell = Variable(torch.zeros(1, x.size(0), self.hidden_size)),\
                       Variable(torch.zeros(1, x.size(0), self.hidden_size))
        for i in range(x.size(1)):
            curx = x[:
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值