机器学习中损失函数常用log的用意

本文介绍了在机器学习中常用的几种损失函数,包括Zero-one loss、Perceptron loss、Hinge loss、Log loss、Square loss、Absolute loss及Exponential loss等,并详细解释了Log loss在最大似然估计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Log Loss 在使用似然函数最大化时,其形式是进行连乘,但是为了便于处理,一般会套上log,这样便可以将连乘转化为求和,由于log函数是单调递增函数,因此不会改变优化结果。因此log类型的损失函数也是一种常见的损失函数.
一些常用的损失函数:
(1) Zero-one loss
(2) Perceptron loss
(3) Hinge loss
(4) Log loss
(5) Square loss
(6) Absolute loss
(7) Exponential loss

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值