计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。 [1-2] 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(n log(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)), 如归并排序,堆排序)
适用于量大但范围小的场景。
算法思想
计数排序对输入的数据有附加的限制条件:
1、输入的线性表的元素属于有限偏序集S;
2、设输入的线性表的长度为n,|S|=k(表示集合S中元素的总数目为k),则k=O(n)。
在这两个条件下,计数排序的复杂性为O(n)。
计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数(此处并非比较各元素的大小,而是通过对元素值的计数和计数值的累加来确定)。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。
算法过程
假设输入的线性表L的长度为n,L=L1,L2,…,Ln;线性表的元素属于有限偏序集S,|S|=k且k=O(n),S={S1,S2,…Sk};则计数排序可以描述如下:
1、扫描整个集合S,对每一个Si∈S,找到在线性表L中小于等于Si的元素的个数T(Si);
2、扫描整个线性表L,对L中的每一个元素Li,将Li放在输出线性表的第T(Li)个位置上,并将T(Li)减1。
算法实现
/**
* <p>@filename CountingSort</p>
* <p>
* <p>@description 计数排序Java实现(适用于量大但是范围小的排序场景)</p>
*
* @author llspace
* @version 1.0
* @since 2019/5/1 10:22
**/
public class CountingSort {
public static void main(String[] args) {
int[] nums = {2, 3, 2, 4, 1, 1, 0, 5, 6, 0, 9, 8, 5, 7, 4, 0, 6, 9};
int[] result = countingSort(nums);
System.out.println(Arrays.toString(result));
}
private static int[] countingSort(int[] nums) {
int[] result = new int[nums.length];
//计算数组数值范围
int max = nums[0], min = nums[0];
for (int i : nums) {
if (i > max) {
max = i;
}
if (i < min) {
min = i;
}
}
int k = max - min + 1;
//计数数组
int[] count = new int[k];
for (int i = 0; i < nums.length; i++) {
//减少count数组的大小
count[nums[i] - min]++;
}
for (int i = 1; i < count.length; ++i) {
count[i] = count[i] + count[i - 1];
}
for (int i = nums.length - 1; i >= 0; --i) {
//按存取的方式取出c的元素
result[--count[nums[i] - min]] = nums[i];
}
return result;
}
}