点云采样FPS原理及实现

本文介绍了Farthest Point Sampling(FPS)的基本原理,它是一种用于点云采样的方法,旨在从大量点中选择具有代表性的子集。详细步骤包括随机选取初始点,然后每次选择与现有子集最远的点加入,直至达到预设的采样点数。此外,文章还提供了PyTorch实现FPS的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、FPS原理

Farthest Point Sampling(FPS)是点云采样中的一种常见的方法,用来从N个点中选择出M(M<N)个点,具体步骤如下:
假设原始点集为 A = { A 1 , A 2 , . . . . . . ,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GHZhao_GIS_RS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值