点云语义分割:使用Cylinder3D训练SemanticKITTI数据集

本文档详细介绍了如何在Ubuntu18环境下,利用Pytorch 1.5.0和CUDA 10.2进行Cylinder3D模型的训练,针对SemanticKITTI数据集进行点云语义分割。文中涵盖数据准备、训练、测试及可视化过程,并展示了使用官方代码和自训练模型的精度对比,最终模型在SemanticKITTI上的mIoU为59.52。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点云语义分割:使用Cylinder3D训练SemanticKITTI数据集

在这里插入图片描述

一、环境

系统:Ubuntu18
Pytorch:1.5.0
GPU:Tesla V100
cuda:10.2
代码: Cylinder3D

二、数据准备

下载semanticKITTI数据集的点云数据和标签,解压到一起
在这里插入图片描述
将该路径修改到config/semanticktti.yaml文件中的data_path节点下

在这里插入图片描述

三、训练

bash train.sh
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GHZhao_GIS_RS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值