EFM (Explicit Factor Models)显因子模型

本文介绍了显因子模型(EFM)作为针对隐因子模型(LFM)的改进,通过短语级情感分析提取物品特征和用户意见,提高推荐精准度并提供可解释的推荐理由。EFM通过构建用户打分、用户-特征关注和物品-特征质量矩阵,利用最优化损失函数估计缺失值,并进行Top-K推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        SiGIR 2014在推荐系统方面收录了三篇很有价值的论文,提出了新的算法框架。在此介绍第一种算法框架(来自论文:Explicit Factor Models for Explainable Recommendation based on Phrase-level Sentiment Analysis,基于短语级情感分析的可解释型推荐模型——显因子模型)。如与本文有不同理解,不吝赐教。

一、概述
       EFM ( Explicit Factor Models,显因子模型),是针对LFM (Latent Factor Models,隐因子模型) 的不足而设计的。
LFM的特点如下:
       a. 通过分类抽象出隐因子空间。在分类过程中,我们不需要关心分类的角度,结果都是基于用户打分自动聚类的。分类的粒度通过设置LFM的最终分类数来控制。
       b. 对于每个物品,并不是明确地划分到某一类,而是计算其属于该类的程度。
       c. 对于每个用户,计算他对每个类的兴趣度。
不足在于:
       <1>单一的打分不能反映用户对物品各项特征的偏好,没有利用到用户评论。
       <2>因为类别是抽象出来的,没有明确的含义,所以向用户推荐物品时,无法解释推荐理由。

EFM的特点如下:
       a. 通过对用户评论进行phrase-level(短语级)的情感分析,显式地抽取物品的特征和用户的意见。
       b. 对于每个物品,计算它对每个特征的包含程度。
       c. 对于每个用户,计算他对每个特征的喜好程度。
       d. 根据用户评论和打分两方面的数据(设置这两者的权重),计算得到用户-物品的喜好程度矩阵。
       e. 向用户推荐购买物品的同时,也建议用户不要购买某些物品。
优点在于:
       <1>充分利用用户评论,提高算法的精准度。
       <2&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值