1. 书籍
-
《Reinforcement Learning: An Introduction》(强化学习导论):由University of Alberta的Richard Sutton教授和Andrew Barto合著,这本书是业内公认的经典入门教材,适合新手入门,涵盖了基本知识和基础算法,包括一定数量的应用实例。
-
《动手学强化学习》:上海交通大学ACM班创始人俞勇教授、博士生导师张伟楠副教授等编写,基于上交大ACM班的人工智能专业课程构建强化学习的学习体系,理论扎实、落地性强。本书理论与实践并重,在介绍强化学习理论的同时,还提供了配套的线上代码实践平台,展示源码的编写和运行过程。
-
《深度强化学习》:王树森、张志华所著,这本书被认为最适合入门,提供了深入浅出的强化学习理论讲解,并结合实际例子。
-
《蘑菇书EasyRL》:这是一本强化学习中文教程,也称为“蘑菇书”,由李宏毅老师的《深度强化学习》视频课程整理而来,内容幽默风趣,适合中文读者入门强化学习。在线阅读地址为:蘑菇书EasyRL。
-
《强化学习:原理与Python实现》:肖智清所著,这本书面向初学者,介绍了强化学习的基础原理和Python实现,风格简洁明了,非常适合入门强化学习领域。
- 《强化学习的数学原理》:赵世钰老师的书籍,从数学角度透彻理解强化学习。
2. 课程
- David Silver的《Reinforcement Learning》课程:由谷歌DeepMind的David Silver博士主讲,适合初学者入门