论文:Generative Adversarial Nets
pdf:http://de.arxiv.org/pdf/1406.2661
code:https://github.com/goodfeli/adversarial
摘要
我们提出了一个新的框架,用于通过对抗来估计生成模型过程中,我们同时训练两个模型:生成模型G
捕获数据分布,以及判别模型D样本来自训练数据而非G的概率。训练G的过程是最大程度地提高D犯错的可能性。 这个
框架对应于一个两人零和游戏。 在任意空间功能G和D,存在唯一的解决方案,其中G恢复训练数据
分布和D等于12无处不在。 在定义了G和
翻译
2020-10-21 17:23:20 ·
518 阅读 ·
0 评论