【CVPR2019】完整论文列表二

本文精选了CVPR2019大会中关于计算机视觉领域的前沿研究,涵盖了从图像处理到深度学习,从人脸识别到动作识别等多个主题。论文涉及技术包括GANs、CNNs、3D重建、姿态估计、目标检测、场景理解等,展示了计算机视觉领域的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2019 Paper list No.1001-1294

?CVPR2019 完整列表一


在这里插入图片描述

论文题目与链接
Semantic Component Decomposition for Face Attribute Manipulation
R3 Adversarial Network for Cross Model Face Recognition
Disentangling Latent Hands for Image Synthesis and Pose Estimation
Generating Multiple Hypotheses for 3D Human Pose Estimation With Mixture Density Network
CrossInfoNet: Multi-Task Information Sharing Based Hand Pose Estimation
P2SGrad: Refined Gradients for Optimizing Deep Face Models
Action Recognition From Single Timestamp Supervision in Untrimmed Videos
Time-Conditioned Action Anticipation in One Shot
Dance With Flow: Two-In-One Stream Action Detection
Representation Flow for Action Recognition
LSTA: Long Short-Term Attention for Egocentric Action Recognition
Learning Actor Relation Graphs for Group Activity Recognition
A Structured Model for Action Detection
Out-Of-Distribution Detection for Generalized Zero-Shot Action Recognition
Object Discovery in Videos as Foreground Motion Clustering
Towards Natural and Accurate Future Motion Prediction of Humans and Animals
Automatic Face Aging in Videos via Deep Reinforcement Learning
Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection
A Content Transformation Block for Image Style Transfer
BeautyGlow: On-Demand Makeup Transfer Framework With Reversible Generative Network
Style Transfer by Relaxed Optimal Transport and Self-Similarity
Inserting Videos Into Videos
Learning Image and Video Compression Through Spatial-Temporal Energy Compaction
Event-Based High Dynamic Range Image and Very High Frame Rate Video Generation Using Conditional Generative Adversarial Networks
Enhancing TripleGAN for Semi-Supervised Conditional Instance Synthesis and Classification
Capture, Learning, and Synthesis of 3D Speaking Styles
Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds Using Convolutional Neural Networks
Ray-Space Projection Model for Light Field Camera
Deep Geometric Prior for Surface Reconstruction
Analysis of Feature Visibility in Non-Line-Of-Sight Measurements
Hyperspectral Imaging With Random Printed Mask
All-Weather Deep Outdoor Lighting Estimation
A Variational EM Framework With Adaptive Edge Selection for Blind Motion Deblurring
Viewport Proposal CNN for 360deg Video Quality Assessment
Beyond Gradient Descent for Regularized Segmentation Losses
MAGSAC: Marginalizing Sample Consensus
Understanding and Visualizing Deep Visual Saliency Models
Divergence Prior and Vessel-Tree Reconstruction
Unsupervised Domain-Specific Deblurring via Disentangled Representations
Douglas-Rachford Networks: Learning Both the Image Prior and Data Fidelity Terms for Blind Image Deconvolution
Speed Invariant Time Surface for Learning to Detect Corner Points With Event-Based Cameras
Training Deep Learning Based Image Denoisers From Undersampled Measurements Without Ground Truth and Without Image Prior
A Variational Pan-Sharpening With Local Gradient Constraints
F-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Graph Attention Convolution for Point Cloud Semantic Segmentation
Normalized Diversification
Learning to Localize Through Compressed Binary Maps
A Parametric Top-View Representation of Complex Road Scenes
Self-Supervised Spatiotemporal Learning via Video Clip Order Prediction
Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids
Unsupervised Disentangling of Appearance and Geometry by Deformable Generator Network
Self-Supervised Representation Learning by Rotation Feature Decoupling
Weakly Supervised Deep Image Hashing Through Tag Embeddings
Improved Road Connectivity by Joint Learning of Orientation and Segmentation
Deep Supervised Cross-Modal Retrieval
A Theoretically Sound Upper Bound on the Triplet Loss for Improving the Efficiency of Deep Distance Metric Learning
Data Representation and Learning With Graph Diffusion-Embedding Networks
Video Relationsh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值