[Coursera][Stanford] Machine Learning Week 3

本文详细介绍了逻辑回归的基本概念、分类、S型函数、决策边界、代价函数、优化算法以及多分类问题的一对多策略。同时,深入探讨了正则化的概念,包括过拟合、代价函数、正则化、正规方程和非可逆性。通过编程练习,实现了逻辑回归的sigmoid函数、代价函数与梯度计算,并评估了逻辑回归模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间:2014年8月12日 -- 16日

1. Logistic Regression 逻辑回归

     介绍分类(classification) 的概念,S型函数,Decision Boundary,Cost Function,Optimization algorithm, Multiclassification:one-vs-all


2.Regularization 正则化

    overfitting, cost function, Regularization, Normal equation, Non-invertibility



Programming Exercises 2

1 Logistic Regression

1.2 Implementation
1.2.1 Warmup exercise: sigmoid function

g = 1 ./ (1 + exp(-z));

1.2.2 Cost function and gradient

h = 1 ./ (1 + exp(- X * theta));
J = - (1 / m) * ((y' * log(h)) + (1 - y)' * log(1 - h));

grad = (1 / m) * X' * (h - y);

1.2.4 Evaluating logistic regression

s = sigmoid(X * theta);
for  i = 1:m
    if s(i) >= 0.5
        p(i) = 1;
    else
        p(i) = 0;
    end  
end

2 Regularized logistic regression

2.3 Cost function and gradient

h = 1 ./ (1 + exp(- X * theta));
J = - (1 / m) * ((y' * log(h)) + (1 - y)' * log(1 - h)) + (lambda / (2 * m)) * sum(theta(2:end) .^ 2);

grad = (1 / m) * X' * (h - y) + (lambda /  m) * [0;theta(2:end)];


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值