- 博客(665)
- 收藏
- 关注
原创 36、移动和云平台上的模型部署
本文全面介绍了在移动和云平台上部署机器学习模型的相关知识,涵盖了机器学习基础概念、数据处理与分析、分类与回归任务、聚类算法、集成学习、推荐系统算法、神经网络、异常检测、模型序列化与部署等内容。通过详细的示例和代码演示,帮助读者深入理解机器学习技术,并掌握在不同平台上构建和优化机器学习应用的方法。文章还探讨了机器学习的未来发展趋势,为读者提供了全面的学习和实践指南。
2025-09-14 08:19:19
4
原创 Perl与Python编程实践案例解析
本文涵盖多个编程实践案例,包括Perl和Python语言的函数编写、文件处理、正则表达式、输入输出操作及调试技巧。内容涉及子例程定义、状态变量使用、文件读写、字符串处理、正则匹配、命令行参数处理、文件属性检查等关键技术点,适合编程学习者和开发者参考。
2025-09-13 14:16:17
168
原创 Perl与Python编程实例解析
本文提供了多个编程任务的实现代码,主要涵盖文件操作、目录处理、字符串操作及基本数学运算。使用Perl实现如识别最旧文件、创建链接、切换目录等功能,同时包含Python实现的数学计算和用户交互程序。每个示例均提供完整代码及简要说明,适用于学习和参考。
2025-09-13 14:15:31
173
原创 Perl编程实践:从基础到进阶示例
本文介绍了多个Perl编程任务,涵盖基础语法和进阶应用。包括如何输出'Hello, world'、计算圆周长、用户输入处理、字符串操作、文件权限检查以及简单的游戏开发等内容。每个任务均提供了详细的代码示例和运行说明,适合初学者通过实践掌握Perl语言的核心特性。
2025-09-13 14:01:12
241
原创 35、在移动和云平台上部署模型
本文介绍了如何在移动和云平台上部署一个图像分类模型。博文内容涵盖了服务器端和客户端的代码实现,使用 C++ 和 TorchScript 构建后端服务,并通过 HTML 和 JavaScript 实现前端客户端。同时,详细说明了如何在 Google Cloud Platform (GCP) 上部署该服务,包括 VM 实例创建、GCP SDK 安装、第三方库构建、防火墙配置等关键步骤。最后,对整个部署流程进行了总结,并给出了优化建议,确保服务能够稳定高效运行。
2025-09-13 10:36:07
2
原创 Perl与Python实用编程案例解析
本博客包含多个编程实例,涵盖Perl与Python语言的应用。内容包括文件操作、目录处理、硬链接与软链接创建、信号处理、正则匹配、日期判断等。每段代码均提供详细实现和说明,适用于系统管理、脚本开发等场景,有助于提升编程实践能力。
2025-09-13 10:27:06
226
原创 34、移动和云平台上的模型部署
本文详细介绍了如何在移动和云平台上部署机器学习模型。重点包括在 Android 系统上实现图像分类应用的关键步骤,涉及 Java 和 C++ 的代码实现,以及模型和资产的加载过程。同时,还探讨了如何将图像分类应用部署到 Google Compute Engine 平台,通过 Flask 实现 HTTP 服务,完成图像数据处理和模型推理,并返回分类结果。文章全面覆盖了从开发到部署的全流程,帮助开发者将机器学习模型应用于实际场景。
2025-09-12 12:26:18
2
原创 Linux命令与系统管理实战指南
本博客系统讲解了Linux系统下的常用命令和系统管理操作,涵盖目录导航、用户验证、文件操作、网络配置、软件包管理、权限控制、进程管理、日志处理、服务控制、数据库配置及安全工具使用等核心技术,适合初学者和网络安全从业者学习与实践。
2025-09-12 10:51:18
603
原创 Linux网络与蓝牙管理指南
本博客介绍了Linux系统中网络与蓝牙设备的管理方法,包括使用ifconfig、iwconfig、iwlist等命令查看网络设备与无线接入点,通过nmcli连接Wi-Fi,使用hciconfig与hcitool管理蓝牙设备,以及使用l2ping测试蓝牙设备可达性。此外还介绍了内核版本查看、模块管理、IP转发配置、crontab定时任务设置及系统启动项管理等内容。
2025-09-12 09:28:37
581
原创 26、异常检测的高级技巧与实践
本文探讨了异常检测的高级技巧与实践,包括单侧函数分析与检测优化、忽略特定时间段的策略、自定义规则和过滤器的应用、异常检测作业的吞吐量考量,以及如何避免用例的过度工程化。同时,还介绍了在运行时字段上使用异常检测的方法,以提升数据分析的准确性和效率。
2025-09-12 03:39:07
8
原创 33、机器学习模型的导出、导入与部署
本文详细介绍了机器学习模型的导出、导入以及在移动设备和云平台上的部署方法。内容涵盖Caffe2张量处理、图像预处理、类定义文件读取、不同框架的模型序列化支持,以及在Android设备和Google Compute Engine上的具体实现步骤。同时,还讨论了ONNX格式在跨框架模型共享中的作用,并展望了模型部署技术的未来发展趋势。
2025-09-11 13:43:00
1
原创 25、使用 Eland 将外部模型导入 Elasticsearch 及异常检测技巧
本文介绍了如何使用 Eland 将外部训练的机器学习模型(如 scikit-learn、LightGBM 和 XGBoost 模型)导入 Elasticsearch,并利用其进行推理和异常检测。同时,还分享了多个实用的异常检测技巧,包括影响因素分析、单边函数的使用、忽略异常时间段、自定义规则配置、运行时字段的应用等内容,帮助用户更高效、准确地进行异常检测,为业务决策提供支持。
2025-09-11 12:14:37
10
原创 32、模型导出与导入:Shark - ML、PyTorch 及 ONNX 格式全解析
本文详细解析了 Shark-ML、PyTorch 以及 ONNX 格式在机器学习模型导出与导入方面的应用。介绍了不同库和格式的模型序列化与反序列化方法,包括代码示例和流程图,并对比了它们的特点和适用场景。旨在帮助开发者根据实际需求选择合适的模型保存和共享方案,提升模型开发和部署效率。
2025-09-10 15:56:23
1
原创 24、弹性栈中机器学习推理处理与摄入管道的应用指南
本文详细介绍了如何在 Elastic Stack 中使用推理处理器和摄入管道进行机器学习推理处理。内容涵盖了模型导入确认、推理处理器与摄入管道的基本概念、配置步骤、数据处理中的常见问题与解决方案,以及性能优化策略。通过实际示例和最佳实践,帮助读者构建高效、智能的数据处理流程,适用于各种机器学习应用场景。
2025-09-10 13:41:41
6
原创 23、机器学习模型训练、决策树回归及模型管理全解析
本文深入解析了机器学习中的回归模型,特别是决策树回归的原理与应用,并介绍了如何使用Elasticsearch的Trained Models API对训练好的模型进行管理。内容涵盖回归与分类的区别、决策树的构建与训练流程、损失函数的作用,以及模型的导出、导入和迁移应用。通过实际案例展示了如何使用决策树进行房屋价格预测以及模型在不同Elasticsearch集群间的迁移过程。文章还提供了详细的技术要点和操作流程图,帮助读者全面掌握相关技术。
2025-09-09 15:02:51
6
原创 31、循环神经网络情感分析与模型序列化
本文介绍了循环神经网络(RNN)在情感分析中的应用,重点讨论了不同类型的RNN架构(如LSTM、GRU)以及词嵌入技术(如Word2Vec、GloVe)的使用。同时,文章探讨了在C++库中进行机器学习模型序列化的方法,包括Dlib和Shogun库的具体实现,并介绍了ONNX格式在跨框架模型共享和部署中的优势。最后,文章给出了模型序列化与部署的整体流程,并总结了不同工具和方法的适用场景。
2025-09-09 13:25:24
1
原创 30、基于循环神经网络的情感分析
本文介绍了基于循环神经网络(RNN)的情感分析方法,涵盖双向RNN和多层RNN的架构特点,并深入解析了自然语言处理中的词嵌入技术Word2Vec和GloVe。通过使用PyTorch框架,构建并训练了一个用于电影评论情感分类的深度学习模型,详细描述了数据处理、模型构建、训练优化及评估的全过程。实验结果表明该模型在情感分析任务中具有良好的性能,同时对未来优化方向提出了展望。
2025-09-08 16:55:44
1
原创 22、机器学习中的分类与回归分析
本文详细介绍了机器学习中的分类与回归分析方法,重点探讨了决策树的训练与超参数调节、分类结果的解读方式、回归模型的构建与评估指标,以及特征重要性和超参数调节的实际应用。通过具体案例(如乳腺癌分类与房价预测),展示了如何在Elasticsearch中进行分类与回归建模,并提供了模型优化与业务洞察的实用建议。文章旨在帮助读者更好地理解监督学习的核心技术,并将其应用于实际问题的解决中。
2025-09-08 15:51:36
6
原创 29、图像分类与情感分析中的神经网络技术
本博客深入探讨了神经网络在图像分类与情感分析中的应用,从专业框架的优势、人工神经网络的基础知识,到循环神经网络(RNN)的工作原理及其在自然语言处理中的应用进行了系统性介绍。重点分析了RNN的梯度问题及其解决方案,如LSTM和GRU架构。此外,还提供了一个基于PyTorch实现的电影评论情感分析示例,展示了完整的数据预处理、模型构建、训练和评估流程。通过本博客,读者可以深入了解神经网络技术在序列数据处理中的强大能力及其实际应用方法。
2025-09-07 15:02:38
1
原创 21、机器学习分类任务全解析:从基础到实践
本文全面解析了机器学习中的分类任务,从特征工程、模型评估的基础概念,到使用威斯康星乳腺癌数据集的实践操作,深入讲解了决策树的工作原理及梯度提升决策树的超参数优化方法。文章还提供了实际应用建议,帮助读者系统地理解和提升分类模型的性能,适用于医疗诊断、金融风险评估等多个应用场景。
2025-09-07 13:33:53
7
原创 20、机器学习中的异常检测与分类分析
本文详细探讨了机器学习中的异常检测与分类分析,重点介绍了异常检测的评估与超参数调优过程,以及分类模型的训练、评估与优化方法。通过实际案例和评估结果对比,展示了超参数调整对异常检测效果的影响,并深入解析了分类分析中的特征工程、决策边界、评估指标及模型优化策略。文章还总结了异常检测与分类分析的特点,并展望了未来发展方向。
2025-09-06 14:57:21
6
原创 28、基于LeNet5的图像分类神经网络实现
本文详细介绍了基于LeNet5架构的图像分类神经网络的实现、训练和评估过程。通过数据读取、网络定义、模型训练和评估等关键步骤,构建了一个有效的图像分类模型。使用PyTorch框架实现网络结构,并对MNIST数据集进行训练和测试,展示了完整的深度学习图像分类流程。同时,对关键技术点进行了深入分析,并提供了常见问题的解决方案以及可能的扩展与改进方向。
2025-09-06 09:20:01
1
原创 19、异常值检测:原理、应用与评估
本文详细介绍了异常值检测的原理、应用场景以及评估方法。内容涵盖局部异常因子(LOF)和局部基于距离的异常因子(LDOF)的计算原理,特征影响在识别异常关键因素中的作用,异常值检测与异常检测的核心区别,以及通过葡萄酒和乳腺癌数据集的实际案例展示其应用。同时,介绍了如何利用Evaluate API评估异常值检测算法性能,并选择合适的阈值提高检测准确性。文章为数据处理和分析提供了全面的指导。
2025-09-05 13:15:43
5
原创 27、图像分类的神经网络实现
本文详细介绍了使用Shogun、Shark-ML和PyTorch库构建、训练和评估用于图像分类的神经网络的方法。涵盖了基本训练流程、不同库的使用步骤、代码示例以及对比分析,适合不同需求下的图像分类任务。同时讨论了实际应用中的注意事项和未来发展方向。
2025-09-05 11:37:43
原创 18、利用Python和Elastic Stack进行数据分析与异常值检测
本文介绍了如何使用Python与Elastic Stack进行数据分析,重点探讨了Elastic Stack中的异常值检测技术。内容涵盖Python Elasticsearch客户端的使用、Eland库的设计与操作步骤,以及异常值检测的工作原理、应用场景和配置评估方法。通过这些内容,读者可以掌握利用Python和Elastic Stack进行高效数据分析和异常检测的方法。
2025-09-04 16:47:10
6
原创 26、图像分类中的神经网络技术详解
本文详细解析了图像分类中使用的神经网络技术,涵盖神经网络初始化方法(如Xavier和He初始化),卷积神经网络(CNN)的原理、结构与经典架构LeNet-5,深度学习的应用领域及突破性发展。此外,还介绍了使用C++库(如Dlib、Shogun、Shark-ML和PyTorch C++ API)构建神经网络的方法,包括回归任务和图像分类任务的实现示例。最后总结了相关技术的优势、适用场景及未来发展方向。
2025-09-04 15:01:37
原创 26、制造业的未来:技术驱动与挑战并存
本文探讨了制造业的未来发展,重点分析了技术驱动下的变革与挑战。文章详细介绍了新兴技术如人工智能、物联网、3D打印等对制造业的影响,并讨论了未来工厂的特点、全球制造业的趋势以及应对挑战的策略。同时,强调了数字化转型、技术融合和可持续发展在推动制造业迈向智能化、绿色化和全球化过程中的关键作用。
2025-09-04 05:49:34
28
原创 17、深入探索 Elasticsearch 中的 Painless 脚本语言
本文深入介绍了 Elasticsearch 中的 Painless 脚本语言,包括其基本语法、变量操作、控制流、函数定义等内容,并结合 Python 展示了如何与 Elasticsearch 进行交互,涵盖连接、索引、查询以及结合 Painless 脚本的高级应用,帮助开发者更高效地进行数据处理和分析。
2025-09-03 15:45:22
7
原创 25、生物制造:现状、挑战与未来趋势
本文探讨了生物制造的定义及其带来的丰富产品、降低能源使用、促进创新和可持续性等益处,同时分析了其面临的复杂性、可承受性、招聘问题、缺乏监管、基础设施不足和劳动力挑战。文章概述了全球生物制造的发展现状,包括美国、英国、中国等国家的具体情况,并预测了未来趋势,如降低成本、加强合作、采用先进技术等。最后,文章提出了应对挑战的策略,并展望了生物制造的技术突破、市场拓展和可持续发展方向。
2025-09-03 14:54:36
36
原创 25、图像分类中的神经网络:原理与优化
本文深入探讨了图像分类中神经网络的核心原理与优化方法。内容涵盖反向传播算法的改进(如动量法)、常用损失函数及其适用场景、激活函数的特性与选择原则、正则化技术(包括L2正则化、Dropout和批量归一化)以及神经网络权重的初始化策略(如随机初始化、Xavier初始化和He初始化)。文章还总结了关键知识点,并展望了未来图像分类技术的发展趋势,如更复杂的网络架构、自适应优化方法以及跨领域融合的应用前景。
2025-09-03 11:07:18
原创 18、图算法深度优先搜索与 Dijkstra 算法解析
本文深入解析了图算法中的深度优先搜索(DFS)和 Dijkstra 算法。通过多个挑战实例,详细介绍了 DFS 在路径查找和环检测中的应用,并全面讲解了 Dijkstra 算法的原理、实现步骤及其在最短路径问题中的实际应用。内容涵盖算法的时间复杂度分析、Swift 代码实现以及性能优化策略,适用于图论学习和实际工程问题解决。
2025-09-03 09:39:54
23
原创 24、制造业中的网络安全与生物制造:现状、挑战与机遇
本文探讨了制造业中网络安全和生物制造的现状、挑战与未来机遇。网络安全部分分析了制造业面临的威胁及应对策略,强调了识别、保护、检测、响应和恢复五个关键步骤。同时,文章介绍了全球网络制造的发展情况,包括美国、英国和德国的典型案例。生物制造部分详细描述了其定义、常见方法、应用领域以及在医药、食品、工业等行业的广泛应用。文章还探讨了生物制造的优势、面临的挑战,以及未来发展趋势,如技术融合、个性化定制和智能化生产。最后总结了网络安全和生物制造对制造业发展的重要性。
2025-09-02 16:57:40
24
原创 24、图像分类中的神经网络技术全解析
本文全面解析了神经网络在图像分类中的应用,涵盖了神经网络的基本概念、人工神经元的结构、感知机的发展与局限性,以及神经网络的复兴历程。重点介绍了反向传播方法的原理、模式与问题,并通过示例详细阐述了其工作流程。文章还探讨了激活函数的选择、正则化技术以及优化算法,为解决过拟合、训练效率等问题提供了方法。最后,展示了神经网络在图像分类中的完整应用流程,并总结了其优势与挑战。
2025-09-02 13:57:55
原创 17、图的广度优先搜索与深度优先搜索算法详解
本文详细介绍了图的两种经典遍历算法:广度优先搜索(BFS)和深度优先搜索(DFS)。内容涵盖算法原理、具体示例、Swift代码实现、性能分析以及相关挑战与解决方案。BFS适用于寻找最短路径,使用队列实现;DFS适合深入探索分支,使用栈实现。两者的时间复杂度均为O(V + E),空间复杂度也为O(V)。文章还通过mermaid流程图直观展示了BFS与DFS的执行过程。
2025-09-02 12:59:13
25
原创 16、数据转换:从批量到连续的实践指南
本文详细介绍了数据转换的基本概念和实践方法,重点讨论了从批量转换到连续转换的应用场景与操作步骤。通过以电子商务订单和社交媒体动态为例,展示了如何使用枢轴和聚合进行数据分组与计算,从而实现多维度数据分析、实时监控与预警。此外,文章还探讨了数据转换过程中的性能优化策略,包括合理选择字段、优化日期直方图配置以及利用缓存和并行处理。最后,总结了数据转换的关键要点,并展望了未来发展趋势。
2025-09-02 09:40:11
4
原创 18、探索 GitHub Copilot:助力软件开发新变革
本文详细介绍了 GitHub Copilot 如何通过人工智能技术革新软件开发流程,涵盖其核心功能、商业版本对比、订阅管理策略、社区支持、法律道德考量以及与其他开发工具的集成,同时探讨了其在代码安全、质量保障和未来技术发展中的作用和潜力。
2025-09-02 04:49:09
30
原创 16、图数据结构的实现与分析
本文深入探讨了图数据结构的两种常见表示方法:邻接表和邻接矩阵,并通过Swift语言实现了这两种方法的具体代码。文章分析了它们在存储空间、添加顶点和边、查找边或权重等操作上的性能差异,总结了各自的适用场景。同时,结合航班网络和朋友关系图等实际示例,展示了如何使用图结构解决现实问题。此外,还介绍了深度优先搜索在路径数量计算和共同朋友查找中的应用,并提供了选择图表示方法的决策流程图。
2025-09-01 16:40:42
24
原创 17、探索 Copilot 商业版和企业版的强大功能
本文详细介绍了 GitHub Copilot 商业版和企业版的强大功能,包括代码解释、获取改进建议、添加上下文信息、增强拉取请求流程、管理访问权限与策略、内容排除和审计日志等。通过实际案例演示了如何在开发过程中提升效率和协作质量,并探讨了 Copilot 在个人开发者和企业组织中的应用场景与优势。此外,还展望了未来 Copilot 即将推出的新功能,如基于 Bing 的网络搜索、微调模型定制以及 Workspace 增强功能等。
2025-09-01 14:12:33
42
原创 23、集成学习与神经网络:原理、实践与应用
本文详细探讨了集成学习与神经网络的原理、实践与应用。内容涵盖使用Shogun库和Shark-ML库实现随机森林、堆叠集成方法,以及神经网络的基本概念和实现,包括多层感知器(MLP)和卷积神经网络(CNN)。同时介绍了深度学习的核心思想及应用场景,并通过LeNet架构展示了图像分类的具体实现。文章旨在帮助读者理解并应用这些强大的机器学习技术解决实际问题。
2025-09-01 10:50:53
原创 23、离岸制造与网络制造:挑战与机遇并存
本文探讨了离岸制造与网络制造的现状、挑战与未来发展趋势。离岸制造因成本优势而广泛应用,但面临时区差异、语言障碍及知识产权保护等问题;而网络制造作为智能制造的重要形式,依赖网络物理系统(CPS)、物联网(IoT)和大数据分析等技术,但也面临多种网络攻击威胁。文章还分析了全球主要地区在网络制造领域的发展特点,并提出了应对网络攻击的策略。最后,文章展望了离岸制造与网络制造结合的可能性与未来发展方向。
2025-09-01 10:32:59
19
制造业的未来:新兴技术革命
2025-09-04
Swift数据结构与算法精解
2025-09-03
GitHub Copilot实战指南
2025-09-02
网络科学:连接的智慧
2025-09-01
SAC 2023密码学前沿
2025-08-31
区块链绑定AI:可追溯智能
2025-08-30
深度学习可解释性解析
2025-09-02
产品经理必读:从零到一的全面指南
2025-08-26
LEGO Mindstorms NXT-G编程指南第二版精华
2025-08-21
Arduino C语言编程入门与实践
2025-08-20
J2ME与MIDP编程实战指南
2025-08-17
Rust微服务开发实战指南
2025-08-11
发展中国家的低碳能源转型之路
2025-08-10
精通Cocos2D游戏开发实战指南
2025-08-09
C# 8与.NET Core 3微服务实战指南
2025-08-08
Scala编程入门与实践
2025-08-06
电子政务研究的前沿问题与趋势
2025-08-02
Rijndael设计与AES标准解析
2025-07-30
计算机科学讲义集:加密理论与应用
2025-07-25
石油储层模拟:工程方法的应用与实践
2025-07-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人