10月08日-A survey of recent advances in CNN-based single image crowd counting and density estimatio 解读
人群密度估计传统的三种方法
- 基于检测的方法
- 基于回归的方法
- 基于密度估计的方法
基于检测的方法
- 最初的研究主要集中在检测风格框架,一个滑动窗口用于检测场景的人,用于计算人的数量,检测使用单片或者基于部件的检测进行,典型的行人检测是使用特征来训练分类器;
- 支持向量机,增量随机森林被获得使用,但是这些方法都只是在低密度人群上获得了成功;
- 基于部分的检测方法来解决这个问题:(1)对身体的特定部分增加分类器,如肩膀,头部等;(2)使用形状学习的方法,使用椭圆形的三维图形建模人类,并使用随机过程来估计前文前景mask的数量和形状参数
基于回归的方法
- 使用部件和形状的方法减轻了遮挡问题,但是密度极高的人群和高混乱背景下,这些方法并不很好使用;
- 使用回归方法,可以避免对学习检测器的依赖,回归主要分成两个部分:(1)低特征提取;(2)回归建模
- 特征提取:(1)前景特性、边缘特性、纹理和渐变特性都被用于编码低级信息;(2)使用背景的减法,从前景片段中提取前景特征;(3)全局特征:局部特征,如边缘和纹理/梯度特性,如局部二进制模式(LBP)、直方图定向梯度(占用)、灰度共生矩阵(GLCM)被用来进一步改进结果。
- 全局特征和局部特征被提取后,使用不同的回归技术来,如线性回归,分段线性回归,岭回归,高斯过程回归和神经网络,来学习低级特征到人群记数的映射
- 文章提到没有一种单独的方法可以计算低分辨率、严重遮挡、透视和透视导致的图片记数问题,发现了一种数学空间关系,可以约束邻近区的计数估计,因此通过将拥挤人群看成不规则非均匀的纹理,使用傅里叶分析和头部检测,并在邻近筛选信息点,通过傅里叶,信息点,和头部检测进行结合,在局部的补丁内进行计算,并在一个多尺度的MRF框架内进行全局约束
- 当遇到稀疏和不平衡的数据时,提出了学习回归模